چین

فروش و راه اندازی خط تولید پروفیل UPVC

Posted by roueen in اکسترودرها on June 22, 2015 with Comments Off on فروش و راه اندازی خط تولید پروفیل UPVC

فروش و راه اندازی خط تولید پروفیل UPVC

 

راه اندازی خطوط پروفیل های یو پی وی سی UPVC شامل مراحل و ماشین های زیر میباشد:

۱. برآورد ظرفیت تولید سالانه

۲. طراحی سیستم پنجره و در دو جداره UPVC براساس نیاز بازار

۳. طراحی سالن تولید، آزمایشگاه، انبار مواد و محصول و سیستم انتقال مواد، سیستم سرمایش و تصفیه آب

۴. طراحی خطوط تولید براساس ظرفیت و سیستم پنجره

۵. طراحی قالب ها براساس نیاز مشتری و تاییدیه طرح ها توسط مهندسین فنی خریدار و ارایه نمونه اولیه پروفیل ها توسط دستگاه پرینتر سه بعدی برای تایید نهایی طرح های ارایه شده

۶. ساخت قالب ها و ماشین آلات تولید پروفیل در و پنجره UPVC و ماشین آلات مونتاژ پنجره و در UPVC

۵. نصب سیستم های سرمایش ، تصفیه، برق و تاسیسات

۶. راه اندازی آزمایشگاه مواد و محصول

۷. مشاوره و انتخاب فرمول مواد برای پروفیل در و پنجره UPVC

۸. تست قالب ها و ماشین آلات با حضور مهندسین فنی خریدار

۹. اصلاحات قالب و ماشین آلات

۱۰. حمل و ترخیص خطوط تولید و لوازم مرتبط

۱۱. ساخت تیغچه برای ماشین آلات مونتاژ پنجره و در UPVC بر اساس نمونه اولیه پروفیل ها

۱۲. نصب و راه اندازی ماشین آلات و قالب ها و اصلاحات نهایی قالب ها در کارخانه محل تولید پروفیل ها و تایید آنها توسط آزمایشگاه خریدار و مهندسین بخش کیفیت

۱۳. مونتاژ پنجره بر اساس پروفیل های تولید شده و اصلاح و تایید قالب ها و ماشین آلات تولید پروفیل UPVC

 

لیست ماشین آلات خط تولید پروفیل در و پنجره UPVC:

۱. خط تولید پروفیل در و پنجره UPVC شامل اکسترودر کونیکال ۵۰، ۶۳، ۷۲، یا موازی ۷۵-۲۶، ۷۵-۳۲، ۷۵-۳۶ ، ۹۰-۲۶، ۹۰-۳۲، ۱۱۴-۲۶، ۱۱۴-۳۶، ۱۳۰-۲۶ و پایین خطی پروفیل شامل میز خلا ۴، ۶، ۸، ۱۱، ۱۴ متری ، کشنده ، اره (ستاره ای و گیوتینی داغ بدون پلیسه) و پروفیل انداز و سیستم اتوماتیک بسته بندی

۲. قالب های سری بازشو و کشویی سری ۶۰ و ۷۰ با سرعت های هر دقیقه یک و نیم متر الی چهار و نیم متر

۳. لوازم آزمایشگاه مواد، پروفیل و پنجره و در UPVC

۴. سیستم میکس (مخلوط کردن) و انتقال مواد به صورت دستی (شامل میکسر گرم و سرد، ترولی مواد، موادکش پودری) به صورت کاملا اتوماتیک (شامل سیلو مواد اولیه، و مواد افزودنی، سیستم اتوماتیک اضافه کردن مواد افزودنی، اتاق کنترل کامپیوتری، میکسر گرم و سرد، لوله های انتقال مواد، سیلو مواد مخلوط شده (کامپاوند UPVC)، مواد کش های پودری اتوماتیک)

۵. چیلر و برجهای خنک کننده، سیستم تصفیه آب، جرثقیل، کمپرسور هوا، اتاق تعمیر و نگهداری قالب، دستگاه جوش، دستگاه پلیش قالب، دستگاه تمیزکننده آلتراسونیک (اولتراسونیک)

۶. سیستم بسته بندی دستی و اتوماتیک پروفیل

 

خطوط تولید پروفیل در و پنجره UPVC این شرکت ساخت آسترونکست اتریش یا چین (به انتخاب مشتری) – سینسیناتی و کراس مافای (اتریش و چین ) یا تیسون (اتریش ) SPG ( اتریش و چین ) میباشد.

خط ۶۵ کونیکال ساخت چین موجود میباشد

قالب های پروفیل در و پنجره UPVC این شرکت ساخت آسترونکست با فولاد آلمانی یا اتریشی یا گراینر Greiner میباشد

 

کلیه خطوط و ماشین آلات دارای یک سال گارانتی و ۲۰ سال خدمات پس از فروش این شرکت میباشد.

 

این شرکت در شهرک صنعتی اشتهارد دارای مرکز خدمات پس از فروش میباشد.

 

نصب و راه اندازی و آموزش توسط مهندسین اتریشی، چینی و ایرانی انجام میگردد.

 

 

برای اطلاعات بیشتر با ما تماس بگیرید

contactus-austronext1

اکسترودر

Posted by roueen in اکسترودر تک مارپیچ on June 20, 2015 with Comments Off on اکسترودر

اکسترودر

نام انگلیسی: Extruder

اکستروژن یکی از روش های شکل دهی است که برای کاهش ضخامت یا سطح مقطح مواد به کار میرود. اکستروژن روشی بسیار انعطاف پذیری است و با استفاده از حدیده مناسب می توان طیف وسیعی از تولیدات را تهیه کرد. به عنوان مثال: تولید دانه گونه Granule production، تولید پروفیل Profile production، تولید ورقه های بسیار نازک به طریقه دمشی Film blowing، قالبگیری دمشی Blow Molding.اکسترودر یعنی مجموعه محفظه و ماردون که می توان به عنوان بدنه و واحد اصلی تولید قطعاتی با اشکال مختلف به کاربرد. اکسترودرها به دودسته اکسترودر تک ماردونهواکسترودر دو ماردونه تقسیم بندی می شوند. اکسترودر ماردونه سه قسمت مجزا دارد ناحیه تغذیه Feed Zone. ناحیه تراکم و فشردگی Compression Zone و ناحیه اندازه گیری و سنجش.
یکی از مهمترین ویژگی پلیمرها و به ویژه پلاستیک ها سهولت شکل پذیری آنهاست . در بعضی حالات، قطعات نیمه کاملی نظیر ورقه ها یا میله های تولید شده، متعاقباً با استفاده از روشهای متداول ساخت، مانند جوشکاری یا ماشین کاری به قطعه نهایی تبدیل می شود. اما در بسیاری مواقع، قطعه نهایی، علیرغم برخورداری از شکلی کاملاً پیچیده، طی یک مرحله تولید می شود. عملیات حرارت دادن، شکل دادن و خنک کردن ممکن است( مانند تولید لوله به روش اکستروژن) به دنبال یکدیگر و بدون وقفه (Continuous) انجام شود و یا ممکن است طی مراحلی ناپیوسته، زمانگیر و تکرار شونده( مثل عملیات تولید تلفن خانگی به روش قالبگیری تزریقی) صورت پذیرد که در اکثر موارد، فرایند به طور خودکار انجام شده برای تولید انبوه بسیار مناسب است . طیف وسیعی از روشهای شکل دهی برای پلاستیک ها و پلیمرهای شکل پذیر کاربرد دارد. در بسیاری از حالات انتخاب روش به چگونگی شکل نهایی قطعه و گرما نرم یا گرما سخت بودن ماردون بستگی دارد . بنابراین در عملیات طراحی، آگاهی طراح از روش های متنوع شکل دهی، حائز اهمیت است زیرا اشکال ناجور و نامناسب قطعه و یا مسائل جزئی کار طراحی، ممکن است محدودیت هایی در انتخاب روش قالبگیری برای طراح ایجاد کند. دسته بندی اکسترودرهای متداول این دسته بندی شامل گونه های زیر می شود.

اکسترودر تک ماردونه
نام انگلیسی: One Screw Extruder
یکی از متداولترین روشهای شکل دهی پلاستیک ها، اکستروژن است که از یک ماردون در داخل محفظه ای تشکیل شده است. پلاستیک ها معمولاً به صورت دانه ای شکل یا خاکه نرم از قیف به ماردونه تغذیه می شود . آنگاه در حال حمل به وسیله ماردون در طول محفظه، در اثر هدایت حرارت از طرف گرم کننده های محفظه (Barrel Heaters) و برش ناشی از حرکت بر روی لبه های ماردون گرم می شود . عمق معبر (Channel-Depth) در طول ماردون کاهش یافته موجب فشرده شدن مواد می شود . در انتهای محفظه اکسترودر، مذاب با عبور از حدیده ای به شکل مورد نظربرای محصول نهایی در می آید.همانطورکه بعدا خواهیم دید، به دلیل امکان استفاده از حدیده های مختلف، اکسترودر یعنی مجموعه محفظه و ماردون را می توان به عنوان بدنه و واحد اصلی تولید قطعاتی با اشکال مختلف به کاربرد اکسترودر ماردونه سه قسمت مجزا دارد:

الف) ناحیه تغذیه (Feed Zone): کار این ناحیه، دادن گرمای اولیه به پلاستیک و انتقال آن به نواحی بعدی است . طراحی این ناحیه حائز اهمیت است. زیرا عمق ثابت ماردون طوری انتخاب شود که مواد لازم و کافی را به ناحیه اندازه گیری (Metering Zone) تغذیه کند؛ به طوری که نه دچار گرسنگی شود و نه در اثر زیاد بود ن مواد، لبریز و پس زده شود. طراحی مناسب (Optimum) و متعادل، به طبیعت و شکل مواد تغذیه شونده (Feedstock) ،شکل هندسی (Geometry) ماردون و خواص اصطکاکی پلاستیک نسبت به ماردون و محفظه بستکی دارد . رفتار اصطکاکی مواد تغذیه شده، تاثیر قابل توجهی بر آهنگ ذوب شدن مواددارد.

ب) ناحیه تراکم و فشردگی (Compression Zone): در این ناحیه، عمق ماردونه به تدریج کاهش می یابد که موجب متراکم شدن و فشردگی پلاستیک می شود. این فشردگی دو نقش عمده ایفا می کند؛ یکی آنکه هوای محبوش در داخل مواد را به ناحیه تغذیه می راند و دیگر آنکه انتقال حرارت را با کاهش دادن ضخامت مواد بهبود می بخشد.

ج) ناحیه اندازه گیری و سنجش: در این ناحیه، عمق ماردونه یکسان و ثابت، اما بسیار کمتر از عمق ناحیه تغذیه است. در این ناحیه، مذاب به صورت همگون و یکنواخت در می آید به طوری که با آهنگ ثابتی، در درجه حرارت و فشار یکسان و ثابت، به حدیده تغذیه می شود. این ناحیه به سهولت و سادگی تحلیل و ارزیابی می شود؛ زیرا مشتمل بر جریان مذاب گرانروان در داخل مجرایی با عمق و ابعاد ثابت است.
طول نواحی سه گانه ماردون خاص، بستگی به ماده ای دارد که تحت اکستروژن قرار می گیرد . برای نمونه نایلون خیلی سریع ذوب می شود، به طوری که تراکم و فشردگی مذاب در طول یک گام از ماردون نیز قابل تامین است. اما پلی وینیل کلراید، به حرارت بسیار حساس است و لذا طول ناحیه فشردگی برای آن برابر با طول ماردون است. از آنجا که پلاستیک ها دارای گرانروی های متفاوت هستند، رفتار آنها در خلال اکستروژن نیز متفاوت است.

آهنگ وزنی خروجی واقعی 25 % با آنچه نشان داده شده اختلاف نشان می دهد که بستگی به دما، سرعت ماردون و غیره دارد. در اکسترودرهای تجاری، نواحی اضافی برای بهبود کیفیت محصول به ماردون افزوده می شود. به عنوان نمونه، ناحیه اختلاطی (Mixing Zone) مشتمل بر پلکان هایی (Flights) با گام کمتر یا معکوس، به منظور کسب اطمینان از یکنواختی مذاب و کافی بودن آن در منطقه اندازه گیری، استفاده می شود .
برخی از اکسترودرها ناحیه هواگیری(منفذ خروج هوا) وجود دارد. وجود این ناحیه به این دلیل است که برخی پلاستیک ها جاذب رطوبت(Hygroscopic)  هستند یعنی از محیط اطراف خود رطوبت جذب می کنند و اگر به همین صورت مرطوب در اکسترودر فاقد ناحیه هواگیری استفاده شوند، کیفیت محصول نهایی خوب نیست؛ زیرا در داخل مذاب، بخار آب محبوس می شود . برای رفع این مشکل راه حل آن است که مواد تغذیه شونده به اکسترودر را قبلاً خشک کنیم. این روش گران و پر هزینه است و امکان آلودگی نیز در مواد ایجاد می کند. روش دوم، استفاده از محفظه های منفذدار (Vented Barrels) است . در اولین قسمت ماردون، مواد که به صورت دانه بندی است، پس از ورود ذوب شده، سپس به طریق معمول فشرده و همگن می شود. آنگاه با ورود به ناحیه غیر فشردگی (Decompression-Zone) ،فشار مذاب به محیط کاهش می یابد؛ این عمل، امکان خروج و گریز بخار و سایر مواد فرار از داخل مذاب را از طریق منفذ تعبیه شده در بدنه اکسترودر فراهم می کند. آنگاه مذاب در طول محفظه به ناحیه دوم فشردگی هدایت می شود تا از محبوس شدن هوا در مذاب ممانعت به عمل آید. دلیل دفع بخار این است که در دمایی برابر با 250 درجه سانتیگراد، بخار آب موجود در پلاستیک مذاب دارای فشاری برابر 4 MN/m2 است که موجب خروج آسان آن از مذاب و گریز از منفذ خروج می شود . توجه کنید که چون فشار محیط تقریباً 0.1 MN/m2 است، استفاده از مکش خلاء (Vacuum) در منفذ خروجی، اثر ناچیزی در خروج بخار و مواد فرار دارد. یکی دیگر از اجزای مهم اکسترودر، صافی (Gauze Filter) پس از ماردون و پیش از حدیده است. این صافی به صورت کاملاً موثری هرگونه مواد ناهمگون و ناخالص یها را از مذاب جدا می کند . عدم وجود آن حتی ممکن است موجب انسداد حدیده گردد. این صفحات صاف و غربال کننده معمولاً مذاب را تا مقیاس 120 تا 150 mصاف و تصفیه می کنند. اما شواهد موجود نشان می دهد که ذراتی کوچکتر از مقیاس فوق، موجب شروع ایجاد ترک های مویین در تولیدات پلاستیکی نظیر لوله های تحت فشار پلی اتیلنی می شود . برای چنین مواردی صافی های بسیار ظریفی در مقیاس 45 mبه کار می رود که به گونه ای موثر و جالب توجه، کیفیت و عمر مفید محصول را بهبود می بخشد. از آنجا که این صافی های ظریف آسیب پذیر است، توسط صفحه سرعت شکنی (Breaker plate) هدایت می شود. این صفحه تعداد زیادی سوراخهای مماس بر یکدیگر و بسیار تنگاتنگ دارد که بدون اینکه به ذرات جامد سوخته (Dead-Spots) احتمالی همراه با مذاب اجازه ورود دهد، مذاب را عبور می دهد. این صفحه سرعت شکن همچنین جریان مذابی را که پس از خروج به صورت حلزونی در آمده است خطی می کند. چون منافذ این صافی های ظریف به تدریج بسته می شود، پی در پی باز شده، تعویض می شود . در بسیاری از اکسترودرهای پیشرفته با صافی های ظریف، کار تعویض آنها بدون نیاز به توقف اکسترودر صورت می گیرد . همچنین باید خاطر نشان کنیم که اگرچه این وظیفه اصلی صفحه سرعت شکن و صاف نیست؛ اما به ایجاد فشار معکوسی که موجب بهبود اختلاط مذاب می شود کمک می کند. چون فشار در حدیده حائز اهمیت است، شیری (valve) پس از صفحه سرعت شکن در اکسترودر وجود دارد که امکان تنظیم لازم را فراهم می آورد. چگونگی جریان (Mechanism of flow) پلاستیگ با حرکت در طول ماردون به صورت زیر ذوب می شود. نخست لایه نازکی (Thin Film) از ماده مذاب در جداره محفظه تشکیل می شود. با چرخش ماردون این لایه از جداره محفظه کنده شده به قسمت جلوی پیکان ماردون انتقال می یابد و وقتی که به سطح خود ماردون (Core of screw) می رسد، دوباره به طرف بالا جاروب می شود. بدین ترتیب حرکت چرخشی در جلوی پیکان ماردون(پیشانی ماردون) به وجود می آید . در آغاز، پلکان ماردون حاوی دانه های جامد است که در اثر حرکت چرخشی به داخل حوضچه مذاب جاروب می شود. با استمرار چرخش ماردون، مواد بیشتری به داخل حوضچه مذاب ریخته می شود. تا اینکه در نهایت فقط مواد مذاب است که پلکانهای ماردون اکسترودر وجود دارد. در اثنای گردش ماردون در داخل محفظه، حرکت مواد در راستای طول ماردون بستگی به چسبندگی مواد به ماردون یا محفظه دارد. به طور نظری در مرز افراط و تفریط (Extremes) وجود دارد. در یکی فقط مواد به درون ماردون چسبیده است، در نتیجه ماردون و مواد مانند استوانه توپر و جامدی در داخل محفظه می چرخد. در این حالت نامناسب هیچ خروجی وجود ندارد . در حالت دوم، مدار روی ماردون می لغزد و مقاومت زیادی در برابر گردش ماردون در داخل محفظه به وجود می آورد. در این حالت حرکتی در جهت محور دستگاه برای مذاب فراهم می شود که بهترین حالت ممکن است. در عمل، رفتار واقعی، حالتی بین دو واحد است زیرا مواد هم به ماردون و هم به بدنه اکسترودر می چسبد. خروجی مناسب ناشی از به وجود آمدن جریان کشنده و جلو برنده ای (Drag flow) در اثر چرخش ماردون و سکون محفظه است که به حرکت سیال گرانروان بین دو صفحه موازی شباهت دارد که در آن صفحه ای ثابت و صفحه دیگر دارای حرکت است. علاوه بر این، جریان دیگری هم ناشی از اختلاف فشار بین دو انتهای ماردون است وجود دارد وبه این دلیل که حداکثر فشار در انتهای اکسترودر به وجود می آید، جریان فشاری (Pressure flow) خروجی را کاهش می دهد. همچنین به دلیل فاصله (Clearance) که بین پلکانهای ماردون و بدنه اکسترودر وجود دارد اجازه نشتی به مواد در جهت عکس امتداد ماردون داده، به طور موثری خروجی گاز را کاهش می دهد . فرار و گریز مواد به سمت عقب ماردون در حالتی که ماردون فرسوده (Worn) باشد بیشتر است. گرما یا سرمای خارج اکسترودر نیز نقش مهمی در نحوه ذوب شدن مواد ایفا می کند. در اکسترودرهایی که دارای خروجی زیادی هستند، مواد، طول محفظه اکسترودر را سریع می کند. در نتیجه گرمای ذوب شدن کامل در اثر عمل برش تولید می شود و به استفاده از حرارت دهنده های خارجی محفظه اکسترودر نیازی نیست. بنابراین در این حالت اگر گرمای زیادی در مذاب به وجود آمده باشد سرد نگه داشتن محفظه حائز اهمیت است . در برخی مواقع خنک کردن ماردون اکسترودر نیز لازم است که البته اثری بر درجه حرارت مذاب ندارد . اما اثر مالشی(اصطکاکی ) بین پلاستیک و ماردون را کاهش می دهد . در همه اکسترودرها خنک کردن محفظه اکسترودر در ناحیه تغذیه ضروری است و لازم است تا بتوان اطمینان کاملی از تغذیه بدون درد سر مواد به اکسترودر به دست آورد. طبیعت و حالت گرمایی مذاب در اکسترودر با دو حالت ترمودینامیکی مقایسه می شود. اولی حالت بی دررو(Adiabatic) است؛ به این مفهوم که سیستم کاملاً مجزا از محیط خارج است و هیچ جذب و دفع حرارتی در آن رخ نمی دهد. اگر این حالت مطلوب در اکسترودر حاکم نباشد، فقط مقداری کار لازم است روی مذاب انجام شود تا گرمای معین تولید کند که به ازاء آن هیچ ضرورتی به گرم یا سرد کردن دستگاه نباشد . حالت مطلوب دوم، به همدما (Isothermal) موسوم است که در این حالت، درجه حرارت در تمام نقاط مذاب یکسان است و در نتیجه محفظه به گرم کردن و سرد کردن مستمر و دائمی برای جبران هرگونه اتلاف یا اخذ حرارت از مذاب برای ثابت ماندن دما نیاز دارد. در عمل، عملیات حرارتی در اکسترودرها بین دو حالت مرزی فوق قرار دارد. اکسترودرها ممکن است بدون هیچ حرارت دهنده یا سرد کننده خارجی کار کنند. لیکن در واقع در این صورت بی در رو نیست؛ زیرا اتلاف حرارت به وقوع می پیوندد. از طرف دیگر با حالت همدما در تمام طول اکسترودر مواجه نیستیم زیرا دانه های جامد نسبتاً سردی به اکسترودر تغذیه می شود . اما برخی از نواحی اکسترودر ممکن است خیلی نزدیک به حالت همدما باشد. معمولاً ناحیه انداره گیری در بحث و تحلیل همدما در نظر گرفته می شود. در حالت کلی: جریان خروجی از اکسترودر را برآیند سه مولف می دانیم جریان جلو برنده و کشنده جریان فشاری جریان نشتی (Leakage flow)

اکسترودر دو ماردونه
نام انگلیسی: Two Screw Extruder
مشخصه های عمومی اکسترودر دوماردونه در سالهای اخیر استفاده از اکسترودرهای دوماردونه که در داخل محفظه داغ اکسترودر حرکت چرخشی دارد، افزایش یافته است. این دستگاه ها در مقایسه با اکسترودرهای تک ماردونه تفاوتهایی در آهنگ خروجی، بازده اختلاط، حرارت تولید شده و نظایر آن نشان می دهد . خروجی اکسترودر دوماردونه معمولاً سه برابر اکسترودر تک ماردونه ای با همان قطر و سرعت است. اگرچه اصطلاح ماردون دوقلو اصطلاحی بین المللی برای اکسترودرهای دو ماردونه است؛ اما دو ماردون لزوماً یکسان نیستند. در واقع انواع گوناگونی از این دستگاه موجود است . برخی از آنها را که دارای ماردون هایی با گردش در جهت مخالف یا موافق یکدیگر است نشان می دهد و به علاوه ماردونها ممکن است به صورت جفت شده (Conjugated) یا جفت نشده (Non-Conjugated) باشند. در حالت جفت نشده، بین پلکان های ماردون فضای خالی وجود دارد که امکان حضور مواد را نیز فراهم می کند. در اکسترودر دو ماردونه ای با جهت چرخش مخالف یکدیگر، مواد دچار برش و فشردگی می شوند(نظیر آنچه در غلتکرانی رخ می دهد) یعنی مواد بین غلتک هایی با جهت چرخش متفاوت، فشرده می شود . دراکسترودر حاوی دو ماردون با جهت چرخش یکسان، مواد از یک ماردون به دیگری منتقل می شود. این گونه آرایش برای مواد حساس به حرارت کاملاً مناسب است؛ زیرا مواد در اکسترودر به سرعت منتقل می شود بدون اینکه کمترین احتمال ماندگار شدن موضعی (Entrapment) مواد وجود داشته باشد. حرکت مواد در اطراف ماردون های جفت نشده کمتر(کندتر) است ولی نیروی جلوبرنده (Propulsive) بزرگتر است.

روش های شکل دهی با استفاده از اکسترودر
اکستروژن روشی بسیار انعطاف پذیری است و با استفاده از حدیده مناسب می توان طیف وسیعی از تولیدات را تهیه کرد. برخی از این روش های بسیار متداول را در اینجا ذکر می کنیم:
– تولید دانه گونه (Granule production)
– تولید پروفیل (Profile production)
– تولید ورقه های بسیار نازک به طریقه دمشی (Film blowing)
– قالبگیری دمشی (Blow Molting)

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

سیلندر و مارپیچ – طراحی مارپيچ در قالب گیری تزریقی

Posted by roueen in اکسترودر تک مارپیچ on June 19, 2015 with Comments Off on سیلندر و مارپیچ – طراحی مارپيچ در قالب گیری تزریقی

سیلندر و مارپیچ – طراحی مارپيچ در قالب گیری تزریقی

در این مقاله تفاوت‌های مشاهده شده بین فرآیند پلاستیک‌ها در صنایع اکستروژن و قالب‌گیری تزریقی مورد بررسی قرار گرفته‌اند. ملزومات برای فرآیند کردن یک پلاستیک در قالب‌گیری تزریقی مشابه اکستروژنی است، اما بسیاری از عبارات متفاوتند. برای مثال سرعت توليد در اکستروژن در مدل آمريكائي به صورت pph/rpm و در تزریق به صورت oz/sec تعریف می شود. البته تفاوت اولیه این دو فرآیند این است که فرايند اکستروژن پیوسته و فرايند تزریق به صورت آغاز-ايست است. از آنجائی‌که فرايند اکستروژن پیوسته است، بررسی کیفیت ماده‌ی فرآیند شده راحت‌تر از تزریق است. سامانه‌های اکستروژنی به طور طبیعی و با دقت، فشار مذاب، دمای مذاب و آمپراژ را نشان می‌دهند. اندازه محصول پایانی به صورت پیوسته تا هزارم یک اینچ و یا حتی بهتر اندازه‌گیری می‌شود. با چنین مشاهده‌ی پیوسته‌ای، مشکلات کیفی به سرعت مشخص می‌شوند. کیفیت ماده‌ی خروجی از سيلندر در قالب گیری تزریقی معمولا هنگامی مورد توجه قرار می‌گیرد که بين قطعات تفاوت‌هاي فاحشي مشاهده شود مثل پديداري رگه‌های رنگ یا عدم اختلاط مشهود، زمان‌های بازگشت که باعث افزایش زمان چرخه توليد می‌شوند، دماهای مذاب که یا كم هستند که در این حالت با همراه شدن با فشارهای تزریق ناکافی به قالب اجازه پر شدن نمی‌دهد (Short shot)، و یا این دماها بسیار بالا هستند که باعث چکه کردن از افشانك تزريق و یا پليسه دادن می‌شوند. دلایل این فقدان مشاهده‌ی کیفیت مناسب ماده فرآیند شده دو علت است:
اول: بیشتر قطعاتی که قالب‌گیری مي‌شوند در ابتدا برای استفاده از یک بسپار مشخص با خواص فیزیکی کافی طراحی می‌شوند. قطعات آزمایش می‌شوند و در نهایت تحت تولید قرار می‌گیرند. قالب‌گیری واقعی ممکن است در ماشینی انجام شود که فشار تزریق کافی نداشته باشد. در این حالت برای غلبه بر کمبود فشار تزریق، اپراتور فشار و دمای سیلندر را افزایش می‌دهد تا ماده بتواند قالب را پر کند. به ندرت رخ می‌دهد اپراتور بررسی کند که آیا دما بسیار بالا است یا نه، چرا که وظیفه او پر کردن قالب و توليد قطعه است و احتمالا نمی‌داند که به دلیل افزایش دما یا برش امکان تخریب وجود دارد. بعد از اینکه قطعه در تولید قرار گرفته است، آزمایش فیزیکی معمولا زمانی انجام می‌گیرد که نقصی رخ دهد.
دوم: شرکت‌های تولید‌کننده ماشین‌های تزریق، توسط قالب‌ سازها مورد الزام قرار نمی‌گیرند تا فناوری فرآیند را بهبود دهند چرا که قالب‌ ساز از نیاز برای یک سطح بالا از فناوری فرآیند و یا ناشی از فناوری فرآیند بهبود یافته آگاه نیست. فناوری‌های فرآیندی بسیار کمی انتقال از اکسترودر به قالب‌گیری تزریقی را انجام داده‌اند. تفاوت‌های سخت‌افزاری بین اکستروژن و تزریق:

1- L/D:
طول تقسیم بر قطر (طول مارپیچ یا سیلندر تقسیم بر قطر داخلی سیلندر یا قطر خارجی پیچ ) در اکستروژن به طور معمول 30:1 و یا بیشتر است، در حالی‌که در قالب گیری تزریقی 20:1 نیز طبیعی است. در تزریق بدلیل اینکه مارپیچ عمل رفت و برگشت را نيز انجام می‌دهد طول مارپیچ کاهش یافته است. مقدار کاهش طول موثر مارپیچ ارتباط مستقیمی با مقدار تزریق دارد. بنابراین هرچه مقدار تزریق بیشتر باشد، گرسنگی مارپیچ از بسپار بیشتر است چرا که بسپار ورودی نسبت به اولین گام به سمت جلو منتقل شده است. طراحی‌های مارپیچ تزریقی معمولا تغییرات اضافی برای قسمت خوراک‌دهی دارند تا این گرسنگی را جبران کنند.
طول سیلندر و مارپیچ اکستروژن از 20:1 به 30:1 و بیشتر افزایش یافته است. دلیل این افزایش طول در فرمول‌های مربوط به سرعت جریان و جریان فشاری توصیف شده است. سرعت جریان بر حسب اینچ مکعب در ثانیه برابر است با:
Q total = Q drag + Q pressure – Q leakage
Q pressure = p D h3 P sin2 f / 12 u L
که در معادله جریان فشاری، رابطه L خطی و h به توان 3 است. ابن بدین معنی است که هر گونه افزایش در عمق می بایست افزایش مناسبی در طول داشته باشد یا در غیر این صورت مقدار جریان فشاری جریان کلی را کاهش خواهد داد. این فرمول انتقال حرارت و ذوب را در نظر نمی گیرد و تنها برای نشان دادن مقادیر در حالت گرانروي ثابت ساده سازی شده است.

مزایای استفاده از نسبت‌های طول به قطر بالا در اکستروژن عبارتند از:

افزایش سرعت ( زمان های بازگشت کاهش یافته)
دمای مذاب كم‌تر
نوسانات دما و فشار کمتر
بهبود بازدهی انرژی
موارد الف و ب کاهش زمان چرخه را سبب می شوند: مورد الف زمان چرخه را کاهش می‌دهد در صورتی‌که بازگشت یک عامل محدود کننده باشد. مورد ب زمان لازم برای بسته بودن قالب را کاهش می‌دهد، از این رو هر دو عامل زمان چرخه را کاهش می‌دهند. اگر دمای پایین مذاب بدلیل کمبود فشار یا سرعت کافی تزریق باعث تزریق کم شود، یا اگر قالب در حین تزریق باز شود (کم بودن میزان تناژ قفل‌شدگی قالب) در این حالت یا واحد تزریق به خوبی انتخاب نشده است و یا اینکه اندازه نادرستی از ماشین انتخاب شده است. هدف بکار بردن کمترین دمای مذاب ممکن نیست بلکه دمای مذابی است که تولید کننده توصیه کرده است. در بسیاری از کاربردها مشاهده شده است که دمای مذاب مشاهده شده بالاتر از دمای توصیه شده است. کوچک سازی اندازه (کاهش قطرهای سیلندر و مارپیچ ) همراه با نسبت طول به قطر زياد می‌تواند یک راه حل برای فشار تزریق ناکافی باشد. اندازه تزریق باید مورد بررسی قرار گیرد تا قطر مناسبی انتخاب شود. در بسیاری از موارد ، سرعت بازگشت می‌تواند ثابت نگاه داشته و یا افزایش یابد. کاربردهای نيازمند محل گازگيري در صنعت قالب‌گیری تزریقی که دارای همان سیلندر و نسبت طول به قطر مارپیچ (20:1)، به سرعت در حال جایگزین شدن با سامانه‌های بدون گازگير ولي با خشک‌کن می‌شوند. استفاده از یک سامانه‌ی گازگير برای بیرون کشیدن بخار و مواد فرار در صورتی‌که طراحی مناسبی داشته باشند، دارای مزایای اقتصادی بسیار بیشتری هستند. در اکستروژن نسبت طول به قطر 30:1 برای گازگيري مناسب است. جریان در ناحيه‌ي گازگيري در یک سامانه‌ی با طراحی مناسب وجود ندارد. فناوری برای بکار بردن سامانه‌های گازگيردار و استفاده از مزایای آنها بدون معایب مشاهده شده در استفاده نادرست و طراحی ضعیف وجود دارد.

2- طراحی مارپیچ:

نسبت طول به قطر بالاتر برای قسمت‌های عمیق‌تر، امکان استفاده از عمق را می‌دهد که سرعت خروجی افزایش يابد. مشکلی که عمیق بودن ناحیه پيمايش يا پمپش (Metering) ایجاد می‌کند این است که به ذرات ذوب شده اجازه ورود به ناحیه پيمايش را می‌دهند. این ناحیه قادر به حذف این ذرات نیست، پس این ذرات به سمت انتهای جریان می‌روند که در بهترین حالت نوسانات گرانروی تولیدی در قطعه قالب‌گیری شد را ایجاد می‌کنند و در بدترین حالت حضور ذرات ذوب نشده در قطعه قالب‌گیری شده را سبب می‌شوند. در صنعت قالب‌گیری تزریقی عادی است که در شرایط فوق فشار پشت داي را بالا می‌برند، در هنگامی‌که محدودیتی (افزايش فشار) اعمال شود، سرعت جریان کاهش خواهد یافت و دمای مذاب افزایش می‌یابد. هم‌چنین پایداری فشار نیز ممکن است کاهش یابد. فشار پشت داي معمولا استفاده مي‌شود و همیشه یک جای‌گزین ضعيف برای طراحی نامناسب مارپیچ است. برای کاهش سرعت جریان در برابر فشار پشت داي با یک طرح مارپیچ کلی، ممکن است فرض شود که کانال‌های جریان انتهایي در مارپیچ می‌توانند انرژی برشی بیشتری را فراهم کنند تا ذوب مورد نیاز برای رسیدن به دمای مذاب یکنواخت را کامل کند. این مسئله به طور طبیعی نادرست است، چرا که بررسی مختصر طبیعت ویسکوالاستیک بسپارهای با گرانروي کم مورد استفاده در قالب گیری تزریقی این برداشت نادرست را تایید می‌کند. در صنعت اکستروژن، طراحی‌های مارپیچ معروف به حالت کلی به ندرت در اویل دهه 1950 مورد استفاده قرار گرفتند. در فرآیند اکستروژن این طراحی تک مرحله‌ای با گام مربعی نامیده می شود که در صنعت تزریق می‌توان به آن طراحی بدون هدف! گفت: یک سوء تفاهم متداول این است که طراحی برای مصارف عمومی با گذشت بیشتری صورت می‌گیرد و استفاده از یک محدوده وسیعی از گرانروي بسپار را ممكن می‌سازد. این مسئله درست نیست. یک اختلاط با طراحی مناسب یا یک مارپیچ سدگر دارای محدوده‌های کارایی بسیار وسيع‌تري است که ناشی از توانایی آن برای پخش کلوخه‌هایی است که به ناحیه پيمايش وارد می‌شوند. طراحی‌های نوین مارپیچ اختلاط مناسب و پخش رنگدانه را بدون کاهش سرعت و البته بدون افزایش فشار پشت داي فراهم می‌سازد. فراوانی بخش های اختلاط در صنعت تزریق در سال‌های اخیر ثابت می‌کند که عملا هر بخشي که در انتهاي قسمت پيمايش (metering) قرار گرفته باشد یک طراحی بی‌هدف را بهبود خواهد بخشید که البته به معنی بودن يكسان بودن همه‌ي بخش‌هاي اختلاط نیست.
طراحی‌های دارای سدگر که در ناحیه انتقالی مواد جامد را از مذاب جدا می‌کند، برای اولین بار در سال 1959 توسط Miallefer معرفی شدند، امروزه متداول‌ترین طراحی سدگر مورد استفاده توسط R.F.Drey در سال 1970 ثبت اختراع شده است. این طراحی هم‌چنین به طور موفقیت‌آمیزی در کاربردهای قالب‌گیری تزریقی با زمان بازگشت کم و کارایی بالا و در ابتدا با نسبت‌های طول به قطر كم بکار برده شده است. در فرآیند اکستروژن کارایی به صورت پوند بر ساعت rpm (pph/rpm) و پوند بر ساعت بر اسب بخار (pph/hp) نشان داده می‌شود. طراحی ناحیه پيمايش طولانی‌تر منجر به سرعت خروجی بهتر با همان فشار پشت داي می‌شود. از آنجایی‌که فشار پشت داي کاهش می‌یابد بازدهی بهبود می‌یابد. طراحی‌های بدون هدف در بسیاری از موارد قادر به کار در فشارهای پشت داي كم نیستند چرا که اختلاط رنگ ناکافی یا کیفیت ماده خروجی پایین است. این مثال تنها ناحیه پيمايش را توصیف می‌کند. که وظیفه این بخش ايجاد فشار است. اگر این ناحیه قادر به ايجاد فشار مورد نیاز نباشد، نیاز به ايجاد فشار به بالا دست جریان منتقل شود که باعث کاهش توانایی ايجاد فشار بالا دست و در این صورت کاهش سرعت ذوب شدن می‌شود.

3- بازخوانی گشتاور:

در صنعت اکستروژن در واقع همه ماشین‌ها با یک آمپرسنج تجهیز شده‌اند که به طور مستقیم گشتاور را نشان می‌دهد. اگر کاربر قصد پیدا کردن تنظیمات بهینه گرم کن سیلندر را داشته باشد، خواندن گشتاور ارزشمند است چرا که کاربر بوسیله آن تلاش می‌کند تا نقطه اوج در منحنی ضریب اصطکاک را بدست آورد . در هر دو طرف نقطه ی اوج ضریب اصطکاک کاهش خواهد یافت و متعاقب آن توانایی مارپیچ برای توسعه و انتقال فشار نیز کمتر خواهد شد. افزایش ضریب اصطکاک، گشتاور و بازدهی مارپیچ (pph/rpm) را افزایش خواهد داد که منجر به کار کردن با دماهای کمتری از مذاب نیز خواهد شد. برای مشخص کردن نقطه‌ي اوج این منحنی، یک روال دمایی متعلق به تولید کننده را باید انتخاب کرد ، سپس به ماشین اجازه داد تا در دماهای واقعی و بدون سرد کردن کار کند، در این حالت باید دماهای نواحی را 5 درجه کمتر از دماهای واقعی در نظر گرفت. افزایش درجه نشان دهنده تغییر آمپراژ یا فشار است. اگر آمپراژ یا فشار افزایش پیدا کرد این عمل را ادامه دهید و اگر کاهش یافت این عمل را متوقف و دماها را در حال خواندن آمپراژ یا فشار افزایش دهید. با کاهش آمپراژ یا فشار باید توقف کرد و تنظیماتی را انتخاب کرد که منجر به بالاترین فشار یا آمپراژ می شود. در قالب‌گیری تزریقی، گشتاور را می‌توان و می‌بایست از طریق فشار هیدرولیکی اعمالي روی مارپیچبررسی کرد. با در دسترس داشتن باز خوانی صحیحی از گشتاور، امکان تعیین کارایی مشابه با صنعت اکستروژن به کاربر داده می شود. لازم به ذکر است که انرژی استفاده شده توسط موتور محرك مارپيچ حداقل 70 درصد کل انرژی است که توسط یک ماشین قالب‌گیری تزریقی استفاده می‌شود بنابراین انتخاب مارپیچی با کارایی مناسب باعث صرفه جویی قابل توجهی در فرآیند قالب‌گیری تزریقی می شود.

4- بازخوانی فشار:

در اکستروژن، فشار داي با دقت خوبی توسط یک انتقال دهنده فشار در پایین دست جریان، پايش می‌شود. در فرآیند قالب‌گیری تزریقی بازخوانی شامل فشار پشت دای است، این همان فشار هیدرولیکی است که در سیلندر تزریق خوانده می شود. نسبت سیلندر تزریق یا سیلندرها به قطر داخلی پوسته اکسترودر معمولا 10 به 1 است. بنابراین دقت در این حالت 10 برابر کمتر از انتقال دهنده‌ای است که در پایین دست جریان (مثل فرآیند اکستروژن) قرار دارد. معمولا نوسانات بازخوانی فشار پشت دای در قالب گیری تزریقی در دسترس نیست. در بعضی از سامانه‌های تزریق دقت قربانی می‌شود، زیرا به دلیل اندازه‌ی نامناسب، شیرهای يك‌طرفه در فشارهای پایین به خوبی عمل کنترل را انجام نمی‌دهند. نوسانات فشار در فرآیند اکستروژن یکی از متغیرهای طبیعی در مارپیچ است که بازخوانی آن نیز انجام می‌شود. این نوسانات کارایی مارپیچ و هم‌چنین کیفیت و نوسانات محصول نهایی را تعیین می‌کنند. در قالب گیری تزریقی، بازخوانی دقیق فشار در مرحله بازگشت امکان تعیین کارایی مارپیچ را می‌دهد. در تزریق معمولا زمان بازگشت نسبت به دیگر متغییرهای ماشین تغییر بیشتری می‌کند. زمان بازگشت و تغییرات زمان بازگشت معمولا تنها نشانه‌ی موجود برای بررسی کارایی مارپیچ در ماشین‌های تزریق است. تقریبا در همه‌ی شركت‌های تولید ماشین‌های تزریق، زمان‌های آسودگی (که باعث افزایش زمان‌های چرخه‌ي توليد می‌شوند) در نظر گرفته نمی‌شوند. با طراحی مناسب مارپیچ ، می‌توان محدودیت‌های زمان آسودگی را حذف کرد و کیفیت محصول را بهبود داد. بعضی از تولید کننده‌های ماشین های تزریق با افزایش rpm زمان‌های آسودگی را کاهش داده‌اند که در صورت عدم طراحی مناسب مارپیچ می‌تواند منجر به حرارت برشی بالا و کیفیت پایین محصول شود. اما بر عکس، در بسپارهای مهندسی دما بالا با طراحی مناسب مارپیچ ، rpm بالا می‌تواند یک مزیت محسوب شود.

5- بازخوانی دما:

در فرآیند اکستروژن دمای مذاب را در پایین دست مارپیچ بدست می‌آورند. محل مناسب برای بدست آوردن دما در انتهای خروجی رابط است (شکل 2) که صحیح‌ترین حالت برای ترموکوپل حالت فرورفته در خط مرکزی جریان مذاب است (شکل 3). حالت مناسب دیگر حالت تماس محدود است (معمولا یک چهارم اینچ). با دوام‌ترین نوع نیز یک نوع سطحی است که البته کمترین میزان صحت را دارد. تغییرات دما به راحتی از طریق بازخوانی دیجیتالی قابل مشاهده و یا قابل ثبت روی ماشین‌های مجهز به ریزپردازنده است. در قالب‌گیری تزریقی، بازخوانی دمای ماده‌ی خروجی از اکسترودر معمولا امکان‌پذیر نیست. صحت در بازخوانی دما در اکسترودرها راحت‌تر از ماشین‌های قالب‌گیری تزریقی بدست می‌آید. اگر قصد بررسی دما در ماشین‌های قالب گیری تزریقی به مانند اکسترودرها را داشته باشیم، می‌بایست خروجی مارپیچ را بهنگام به عقب رفتن آن پايش کرد که بدیهی است این کار بسیار مشکلی است. با این حال این نوع از پايش، به خوبی تغییرات دما را در حین بازگشت توصیف نمی‌کند و فقط یک معیار خوب از دمای ماده ی اکسترود شده در حین تزریق است. حداقل فایده این حالت بدست آوردن نقطه ی مناسبی است که کاربر یا مهندس فرآیند می‌تواند داده ها آن را ثبت کرده و به آن ارجاع کند و در صورت ایجاد تغییرات بزرگ یا دماهای اضافی مخرب برای بسپار، آن را بهبود دهد. در حال حاضر برای قطعات قالب گیری شده تعیین دماهای ماده اکسترود شده بدون وقفه در چرخه ماشین غیر ممکن است.

نتیجه گیری:
کنترل کیفیت محصول در اکستروژن به صورت درون خطی قابل اندازه گیری است و با یک هزارم اینچ یا بهتر قابل بررسی است. درقالب‌گیری تزریقی با اینکه اندازه‌گیری دشوار‌تر است اما غیر ممکن نیست. ماشین های قالب‌گیری تزریقی جدید با ریز پردازنده‌هایی مجهز شده اند که کارکرد ماشین را کنترل و نمایش می‌دهند. بسیاری از این ماشین‌ها دارای کنترل فرآیند آماری (SPC) هستند که در صورت استفاده‌ی صحیح بسیار مفید هستند. همانطور که پیش تر شرح داده شد، در ماشین های قالب گیری تزریقی مشخصه های ضروری برای کنترل ماده ی اکسترود شده و کارایی مارپیچ در حال فراموش شدن هستند. بازخوانی‌های دقیق گشتاور مارپیچ، فشار و دمای مذاب در صنعت اکستروژن به عنوان موارد ضروری در نظر گرفته شده‌اند و استاندارد سازی نیز در مورد آنها صورت گرفته است که در مورد ماشین‌های قالب‌گیری تزریقی نیز این موارد باید در نظر گرفته شوند. بطور کلی واحد تزریق فراموش شده و فناوری فرآیند در آن در نظر گرفته نمی‌شود. فناوری مورد استفاده موجود، از دهه 1950 استفاده می شود. در دهه های 1950، 60و70 فناوری فرآیند در صنعت اکستروژن تغییرات اساسی کرده است. نیروی محرکه این تحولات ظهور تجهیزات اندازه گیری و پايش بود که می‌توانستند کیفیت محصول را به دقت نشان دهند. این تحولات با پدیدار شدن بسپارهای جدید همراه شد که این بسپارها نیاز به فناوری‌های جدیدتری از فرآیند داشتند. بدین ترتیب این فرآیند تکامل پیدا کرد و امروزه در دسترس است.
همین نوع از تحول در صنعت قالب‌گیری تزریقی نیز رخ خواهد داد. که البته با تاخیر در حال انجام شدن است و تغییراتی از قبیل طراحی‌های نوین ناحيه‌ي اختلاط و حتی نسبت طول به قطرهای طولانی‌تر در حال توسعه و اجرا هستند. مشکل اینجاست که در بسیاری از موارد صنعت قالب گیری تزریقی سعی در دوباره کاری در زمینه اختراع دارد. طراحی‌های اختلاط که قادر به بهبود کیفیت و نحوه‌ي بازگشت هستند با طراحی ضعیفی از مارپیچ همراه شده‌اند. طراحی‌های سدگردار با نسبت طول به قطرهایی همراه شده‌اند که قادر به فراهم کردن کارایی بالا و بهبود اختلاط نیستند. صنعت قالب‌گیری تزریقی به جای دوباره‌کاری در زمینه نوآوری بهتر است که تا نوآوری‌های صنعت اکستروژن را بررسی کرده و این فناوري‌ها را بکار بندند. لازمه‌های دو فرآیند اکستروژن و قالب‌گیری تزریقی بسیار شبیه هستند. هزینه‌های صرف شده برای نسبت‌های طول به قطر بالاتر برای مارپیچ، مشاهده و پايش بهتر و طراحی‌های پیشرفته‌تر مارپیچ در مقایسه با مزایای آن بسیار ناچیز است و با کاهش مصرف بسپار و ایجاد میزان کمتری از ضایعات قابل توجیه است. اگر واحد تزریق ماده اکسترود شده را با کیفیت، گرانروی و سرعت مناسب و کنترل مناسبی تولید کند، بسیاری از نقص‌ها در این زمینه قابل اجتناب هستند. علاوه بر آن تکرارپذیری برای هر مرتبه از تزریق باید فراهم شود. هنگامی‌که این دو لازمه اساسی به میزان کافی توسط واحد تزریق مورد توجه قرار گیرند، میزان ضایعات و نقص‌ها به طور چشمگیری کاهش خواهند یافت. تحول در فرآیند قالب‌گیری تزریقی باعث بالا رفتن سطح صنعت و رسیدن به جایگاه بسیار بالاتر خواهد شد. اگر ما قادر به حذف نوسانات از واحد تزریق باشیم و کیفیت مناسبی از ماده اکسترود شده را فراهم کرده و امکان افزایش زمان‌های بازگشت و زمان چرخه را حذف کنیم، آنگاه به طور واقع‌گرایانه‌تری می‌توانیم به طراحی قالب برای بهبود جریان پرداخته و مشکلات مربوط به کیفیت محصول ناشی از طراحی‌های ضعیف قالب را حذف کنیم.

گيربکس – کاربرد گيربکس – گيربکس چیست ؟

Posted by roueen in اکسترودر تک مارپیچ on June 19, 2015 with Comments Off on گيربکس – کاربرد گيربکس – گيربکس چیست ؟

گيربکس – کاربرد گيربکس گيربکس چیست ؟

تعريف گيربکس : گيربکس ماشيني است که براي انتقال توان مکانيکي از يک منبع توليد توان به يک مصرف کننده و هچنين برآورده ساختن گشتاور و سرعت دوراني مورد نياز مصرف کننده به کار مي رود.  گيربکس درواقع يک واسطه بين منبع توان و مصرف کننده توان مي باشد که بين منبع توان و مصرف کننده توان يک انعطاف پذيري بر قرار ميکند.
به دليل هماهنگ بودن گشتاور و سرعت دوراني منبع توليد توان با مصرف کننده نياز به ماشيني که بتواند اين هماهنگي را به صورت يک واسطه برقرار کند امري ضروري به نظر مي رسد دستگاهي که اين خواسته را ميتواند تامين کند گيربکس نام دارد.
منبع توليد توان مهم نيست که با چه نوع سوخت يا منابع انرژي توان را توليد ميکند بلکه اين مهم است که در شفت ورودي به گيربکس توان توليد شده را به صورت گشتاور به گيربکس منتقل کند دستگاههايي که ميتوانند توان مورد نياز  گيربکس را تامين کنند شامل:

موتورهاي الکتريکي – موتورهاي ديزل – موتورهاي بنزيني – موتورماي گاز سوز- توربين هاي بخار – توربين هاي گازي – توربين هاي آبي – توربين هاي بادي – موتورهاي جت – و منابع توليد تواني که انرژي خود را از خورشيد تامين ميکنند مي باشند.

مصرف کننده ميتواند هر نوع ماشيني باشد فقط کافي است که مصرف کننده بتواند توان خروجي از گيربکس را بصورت گشتاور دريافت کند. به عنوان مثال ميتوان به موارد زير اشاره کرد:

خودروها- پمپها- هليکوپترها- هواپيماها- کشتي ها – ماشين هاي تراش و…

در دستگاه هايي که براي آ نها تنوع سرعت اهميت ندارد بلکه افزايش سرعت و کاهش گشتاور يا کاهش سرعت و افزايش گشتاور اهميت دارد از گيربکسی که بتواند اين کاهش يا افزايش گشتاور را در يک مرحله يا چند مرحله انجام دهد استفاده مي کنيم اين نوع ازگيربکس ها ، گيربکس تک سرعته نام دارند مثلا گيربکسی که در بعضي از انواع آسانسوربه کار ميرود.
در بعضي از ماشين آلات و دستگاههايي که در حين کار نياز به افزايش يا کاهش سرعت دوراني داريم نياز به تنوع سرعت نيز داريم مثلا خودروها وقتي از سر بالايي ميخواهند بالا روند بيشتر به گشتاور بالاتر نياز دارند تا سرعت بيشتر تا بتوانند از سر بالايي بالا روند و وقتي که در اتوبان ها حرکت ميکنند بيشتر نياز به سرعت بيشتر دارند تا گشتاور بالا لذا براي تامين اين تنوع سرعت و گشتاور ازگيربکسی که بتواند اين تنوع را برآورده سازد استفاده مي شود. به اين نوع از گيربکس ها که مي توانند اين تنوع سرعت و گشتاور مورد نياز را براورده سازند گيربکس چند سرعته گفته مي شود. کاربرد گيربکس در زندگي انسان از زمان اختراع چرخ و قرقره تا به امروز که به اوج شکوفايي صنعتي رسيده بسيار مهم و جزو لاينفک صنعت مي باشد.

خط تولید لوله یو پی وی سی UPVC – ساخت خط لوله UPVC – خواص و مزایای لوله UPVC

Posted by roueen in اکستروژن پلاستیک on June 19, 2015 with Comments Off on خط تولید لوله یو پی وی سی UPVC – ساخت خط لوله UPVC – خواص و مزایای لوله UPVC

خط تولید لوله یو پی وی سی UPVC – ساخت خط لوله UPVC – خواص و مزایای لوله UPVC

مقاومت در برابر خوردگی:

لوله های UPVC (پلیکا ) نارسانای جریان الکتریکی هستند و در برابر واکنش های الکتروشیمیایی ناشی از اسیدها، بازها و نمک ها که منجر به خوردگی در فلزات می شوند، مقاوم هستند. این ویژگی در سطح داخلی و خارجی لوله‌ پی وی سی وجود دارد. در نتیجه، استفاده از لوله های UPVC در کاربردهایی که در آن خاک مهاجم وجود دارد، بسیار به صرفه است.

 مقاومت شیمیایی بالا:

PVC در برابر بسیاری از الکل ها، روغن ها و مواد نفتی غیرآروماتیک مقاوم است. لوله پی وی سی – لوله پلیکا این ماده همچنین در برابر اکثر خورنده ها نظیر اسیدهای غیرآلی، بازها و نمک ها مقاوم است. برای کارهای معمول آبرسانی، لوله های UPVC کاملاً در برابر مواد شیمیایی موجود در خاک و آب مقاوم هستند. مسئله ی مقاومت شیمیایی تنها هنگامی مطرح می شود که محیط های غیرعادی وجود داشته باشد و یا از لوله برای انتقال مواد شیمیایی استفاده شود.

 مدول الاستیسیته ی بالا و انعطاف پذیری:

مقاومت لوله های UPVC (پلیکا ) در برابر شکست یکی از مزایای عملکردی مهم آنها محسوب می شود. لوله های UPVC تحت بار قادرند بدون شکستگی تغییر شکل بدهند. مدول الاستیسیته UPVC یکی از مزایای مهم آن برای کاربردهای فنی محسوب می شود، به خصوص در شرایطی که حرکت یا لرزش خاک محتمل باشد (زمین لرزه و …). بالا بودن این کمیت باعث می شود تا پدیده دوپهنی در این لوله ها به حداقل برسد. همچنین با توجه به این که ضخامت لوله های فاضلابی بر اساس مقدار مدول الاستیسیته ی رزین مصرفی در ساخت لوله تعیین می گردد، بالا بودن مدول UPVC باعث کاهش ضخامت لوله و افزایش سطح مقطع عبور جریان می شود.

استحکام کششی بلند مدت:

لوله های UPVC (پلیکا ) به گونه ای فرمول بندی می شوند تا استحکام کششی بلند مدت بالایی داشته باشند. حداقل استحکام مورد نیاز (MRS) (که در طراحی لوله های تحت فشار به کار می رود)، برای لوله های UPVC در حدود دو برابر بیشتر از مقادیر متناظر دیگر لوله های پلاستیکی نظیر پلی اتیلن است. به همین دلیل هم ضخامت لوله های UPVC نسبت به سایر لوله های پلاستیکی کمتر بوده و در نهایت وزن لوله پی وی سی – لوله پلیکا کمتری نیز دارد، که این مسئله مزیت مهمی محسوب می شود.

 نسبت استحکام به وزن بالا، وزن سبک:

استحکام بالای UPVC باعث حداقل شدن ضخامت و سبکی این لوله ها می گردد. لوله های UPVC مزیت سبکی چشمگیری دارند که جنبه ایمنی مهمی محسوب می شود. امکان حمل و نقل آسان، آسیب های کاری را حداقل نموده و نصب و حمل و نقل ارزان تر را تسهیل می کند. یک فرد می تواند به راحتی دو لوله ی ۶ متری با اندازه ۱۱۰ را حمل کند، ولی تنها قادر است کمتر از ۱/۵ متر لوله ۱۱۰ آهنی را با همان نیرو حمل کند.

 اتصالات آب بند:

یک مزیت مهم برای هر لوله آب بندی اتصالات آن است. لوله های UPVC ( پلیکا ) با عمق دخول بالا و سیستم های اتصال اورینگی (Push-fit) توانسته است از طریق همین مزیت بسیاری از محصولات سنتی را کنار بزند.

 مقاومت در برابر سایش و خراش:

لوله های UPVC ( پلیکا ) مقاومت بسیار بالایی در برابر سایش و خراش از خود نشان می دهند. ثابت شده است که لوله های پی وی سی دوام بسیار بالاتری نسبت به لوله های فلزی، سیمانی و سفالی در برابر انتقال مواد دوغابی دارند.

 استحکام ضربه:

تحت شرایط نرمال، لوله های UPVC مقاومت نسبتاً بالایی در برابر آسیب های ناشی از ضربه در مقایسه با لوله های سفالی، سیمانی و بیشتر مواد رایج در ساخت لوله دارند. با وجود کاهش مقاومت ضربه لوله های UPVC در دماهای بسیار پایین، استحکام ضربه ی آن همچنان بالاتر از حد نیاز است.

 مقدار زبری پایین:

زبری لوله عامل بسیار مهم و مؤثری در ایجاد افت فشار و کاهش دبی می باشد. لوله های UPVC به دلیل داشتن سطوح داخلی بسیار صیقلی (ضریب زبری و اصطکاک پایین)، مقاومت بسیار پایینی در برابر جریان سیال از خود نشان می دهند. علاوه بر این، در بسیاری از لوله ها باکتری ها در قسمت های زبر و دارای پستی و بلندی لوله تجمع می کنند (تشکیل biofilm ) و به مرور راه جریان آب را می بندند، که این امر باعث افت فشار جریان شده و بر سلامت آب آشامیدنی نیز تأثیر منفی می گذارند. زبری هیدرولیکی پایین لوله های UPVC ,با ممانعت از تشکیل بیوفیلم، علاوه بر کاهش افت فشار، مانع ته نشینی لجن در شبکه های فاضلابی شده و در شبلوله پلیکا – لوله PVCکه های توزیع آب آشامیدنی نیز باعث کاهش احتمال آلودگی می شود. بنابراین هزینه های نگهداری این لوله ها پایین بوده و طراحی اولیه ی خط لوله نیز بهینه تر صورت می گیرد.

 کیفیت آب:

استفاده از فرمولاسیون مناسب جهت تولید لوله های UPVC موجب می شود تا مطابق استانداردهای NSF 61-62 بتوان از این لوله ها جهت انتقال آب آشامیدنی استفاده نمود و اطمینان حاصل کرد که مقادیر سرب، قلع و سایر عناصر سمی نظیر جیوه، کرم، کادمیم و باریم زیر حدود مجاز استاندارد می باشند.

 مقاومت در برابر شعله:

لوله های UPVC ( پلیکا )به سختی آتش می گیرد و در غیاب منبع خارجی شعله به سوختن ادامه نمی دهد. دمای شعله ور شدن خود به خودی آن ۴۵۴ درجه سانتیگراد است، که بسیار بالاتر از اکثر مواد ساختمانی است. در اثر سوختن PVC، گاز HCl آزاد می شود که این گاز از دسترسی اکسیژن به منطقه ی مشتعل شده جلوگیری می کند. به همین دلیل است که PVC را ماده ای خودخاموش شونده می نامند.

 قیمت مناسب:

علاوه بر مزایای ممتاز ذکر شده برای لوله های UPVC ( پلیکا ),قیمت این لوله ها بسیار مناسب و قابل رقابت با سایر لوله های پلیمری، فلزی، چدنی و … می باشند. به طوری که امروزهلوله های UPVC در دنیا یکی از گزینه های اصلی در شبکه های آب و فاضلاب می باشند

خط تولید لوله PVC – ساخت خط لوله PVC – روش تهیه پی وی سی PVC

Posted by roueen in اکستروژن پلاستیک on June 19, 2015 with Comments Off on خط تولید لوله PVC – ساخت خط لوله PVC – روش تهیه پی وی سی PVC

خط تولید لوله PVC  – ساخت خط لوله PVC – روش تهیه پی وی سی PVC

 پلی وینیل کلراید پی وی سی  PVC

پی وی سی (PVC) هم مانند پلی الفین ها(پلی اتیلن، پلی پروپیلن) یکی از پلیمر های پر مصرف می باشد. توانمندی و قابلیت ترکیب پذیری PVC با نرم کننده ها، افزودنی ها گوناگون و ساخت کامپاند های مختلف و دستیابی به طیف وسیعی از ورقه پی وی سی (PVC)ویژگی های مختلف و دستیابی به طیف وسیعی از ویژگی های کاملا متفاوت از فیلم های نرم کاملا انعطاف پذیر گرفته تا قطعات سخت و همین طور امکان فرایندی آسان آن از یک طرف و قیمت مناسب آن به عنوان یک ماده اولیه از طرف دیگر عواملی هستند که افزایش روز افزون PVC در آینده را هم را تضمین می کنند. PVC را می توان با کلیه روش های فرایندی موجود برای ترموپلاست ها فرایند کرد مانند:

 روش های اکستروژنی جهت تولید لوله- کابل- گرانول سازی- فیلم های بادی- پروفیل در و پنجره

 روش های پوشش دهی دورانی .(توپ)- غوطه وری(دستکش) و … با استفاده از پلاستیزول

 روش های معمول تزریقی – فشاری جهت تولید قطعات فنی و پیچیده از PVC سخت

پلیمرهای وینیل کلراید PVC ترموپلاست هایی هستند آمورف و پلار که در برابر شرایط جوی و مواد شیمیایی و همین طور آتش سوزی مقاومت بالایی دارا می باشند. توان ضربه پذیری این ترموپلاست را می توان با تهیه کوپلیمر های VC و یا اختلاط با پلیمرهای دیگر(آلیاژ سازی) افزایش داد.

 

اکسترودر -خط تولید لوله های پلی اتیلن – پلی اتیلن چیست ؟

Posted by roueen in اکستروژن پلاستیک on June 18, 2015 with Comments Off on اکسترودر -خط تولید لوله های پلی اتیلن – پلی اتیلن چیست ؟

اکسترودر – خط تولید لوله های پلی اتیلن – پلی اتیلن چیست ؟

پلی اتیلن چیست؟

پلی اتیلن یا پلی اتن یکی از ساده‌ترین و ارزانترین پلیمرها است. پلی اتیلن جامدی مومی و غیر فعال است. این ماده از پلیمریزاسیون اتیلن بدست می‌آید و بطور خلاصه بصورت PE نشان داده می‌شود. مولکول اتیلن دارای یک بند دو گانه C=C است. در فرایند پلیمریزاسیون بند دو گانه هر یک از مونومرها شکسته شده و بجای آن پیوند ساده‌ای بین اتم‌های کربن مونومرها ایجاد می‌شود و محصول ایجاد شده یک درشت‌مولکول است.

تاریخچه تولید پلی اتیلن

پلی اتیلن اولین بار بطور اتفاقی توسط شیمیدان آلمانی “Hans Von Pechmanv” سنتز شد. او در سال 1898 هنگام حرارت دادن دی آزومتان ، ترکیب مومی شکل سفیدی را سنتز کرد که بعدها پلی اتیلن نام گرفت. اولین روش سنتز صنعتی پلی اتیلن بطور تصادفی توسط “ازیک ناوست” و “رینولرگیسون” ( از شیمیدان‌های ICI ) در 1933 کشف شد. این دو دانشمند با حرارت دادن مخلوط اتیلن و بنزالدئید در فشار بالا ، ماده‌ای موم‌مانند بدست آوردند.علت این واکنش وجود ناخالصی‌های اکسیژن‌دار در دستگاه‌های مورد استفاده بود که بعنوان ماده آغازگر پلیمریزاسیون عمل کرده بود. در سال 1935 “مایکل پرین” یکی دیگر از دانشمندهای ICI این روش را توسعه داد و تحت فشار بالا پلی اتیلن را سنتز کرد که این روش اساسی برای تولید صنعتی LDPE در سال 1939 شد.

استفاده از انواع کاتالیزورها در سنتز پلی‌اتیلن

اتفاق مهم در سنتز پلی اتیلن ، کشف چندین کاتالیزور جدید بود که پلیمریزاسیون اتیلن را در دما و فشار ملایم‌تری نسبت به روش‌های دیگر امکان‌پذیر می‌کرد. اولین کاتالیزور کشف شده در این زمینه تری اکسید کروم بود که در 1951 ، “روبرت بانکس” و “جان هوسن” در شرکت فیلیپس تپرولیوم آنرا کشف کردند. در 1953 ، “کارل زیگلر” شیمیدان آلمانی سیستم‌های کاتالیزور شامل هالیدهای تیتان و ترکیبات آلی آلومینیوم‌دار را توسعه داد.این کاتالیزورها در شرایط ملایم‌تری نسبت به کاتالیزورهای فیلیپس قابل استفاده بودند و همچنین پلی اتیلن یک آرایش (با ساختار منظم) تولید می‌کردند. سومین نوع سیستم کاتالیزوری استفاده از ترکیبات متالوسن بود که در سال 1976 در آلمان توسط “والتر کامینیکی” و “هانس ژوژسین” تولید شد. کاتالیزورهای زیگلر و متالوسن از لحاظ کارکرد بسیار انعطاف‌پذیر هستند و در فرایند کوپلیمریزاسیون اتیلن با سایر اولفین‌ها که اساس تولید پلیمرهای مهمی مثل VLDPE و LLDPE و MDPE هستند، مورد استفاده قرار می‌گیرند.اخیرا کاتالیزوری از خانواده متالوین‌ها با قابلیت استفاده بالا برای پلیمریزاسیون پلی اتیلن به نام زیرکونوسن دی کلرید ساخته شده است که امکان تولید پلیمر با ساختار بلوری (تک آرایش) بالا را می‌دهد. همچنین نوع دیگری از کاتالیزورها به نام کمپلکس ایمینوفتالات با فلزات گروه ششم مورد توجه قرار گرفته است که کارکرد بالاتری نسبت به متالوسن‌ها نشان می‌دهند.

انواع پلی اتیلن

طبقه‌بندی پلی اتیلن ها بر اساس دانسیته آنها صورت می‌گیرد که در مقدار دانسیته اندازه زنجیر پلیمری و نوع و تعداد شاخه‌های موجود در زنجیر دخالت دارد.

HDPE(پلی‌اتیلن با دانسیته بالا)

این پلی اتیلن دارای زنجیر پلیمری بدون شاخه است بنابراین نیروی بین مولکولی در زنجیرها بالا و استحکام کششی آن بیشتر از بقیه پلی اتیلن‌ها است. شرایط واکنش و نوع کاتالیزور مورد استفاده در تولید پلی اتیلن HDPE موثر است. برای تولید پلی اتیلن بدون شاخه معمولا از روش پلیمریزاسیون با کاتالیزور زیگلر- ناتا استفاده می‌شود.

LDPE(پلی‌اتیلن با دانسیته پایین)

این پلی اتیلن دارای زنجیری شاخه‌دار است بنابراین زنجیرهای LDPE نمی‌توانند بخوبی با یکدیگر پیوند برقرار کنند و دارای نیروی بین مولکولی ضعیف و استحکام کششی کمتری است. این نوع پلی اتیلن معمولا با روش پلیمریزاسیون رادیکالی تولید می‌شود. از خصوصیات این پلیمر ، انعطاف‌پذیری و امکان تجزیه بوسیله میکروارگانیسمها است.

LLDPE(پلی اتیلن خطی با دانسیته پایین)

این پلی اتیلن یک پلیمر خطی با تعدادی شاخه‌های کوتاه است و معمولا از کوپلیمریزاسیون اتیلن با آلکن‌های بلند زنجیر ایجاد می‌شود.
MDPE پلی اتیلن با دانسیته متوسط است

 کاربرد

در تولید لوله‌های پلاستیکی و اتصالات لوله‌کشی معمولا از MDPE استفاده می‌کنند. LLDPE بدلیل بالا بودن میزان انعطاف‌پذیری در تهیه انواع وسایل پلاستیکی انعطاف‌پذیر مانند لوله‌هایی با قابلیت خم شدن کاربرد دارد. اخیرا پژوهش‌های فراوانی در تولید پلی اتیلنهایی با زنجیر بلند و دارای شاخه‌های کوتاه انجام شده است. این پلی اتیلن ها در اصل HDPE با تعدادی شاخه‌های جانبی هستند. اینپلی اتیلن ها ترکیبی ، استحکام HDPE و انعطاف‌پذیری LDPE را دارند.

UPVC چیست؟ – درب و پنجره UPVC – مزایای استفاده از در و پنجره های UPVC

Posted by roueen in خط تولید پانل دیوارپوش پی وی سی on June 18, 2015 with Comments Off on UPVC چیست؟ – درب و پنجره UPVC – مزایای استفاده از در و پنجره های UPVC

UPVC چیست؟ – درب و پنجره UPVC – مزایای استفاده از در و پنجره های UPVC

این ماده که نخستین باردرسال 1912تولید آزمایشگاهی شد برپایه سنگ نمک ونفت تشکیل شده که طی فرآیندی شیمیایی وپس ازگذارازچندین مرحله به پودری سفید رنگ بدل می شود که پی وی سی نام دارد. پی وی سی در درآمدزایی ، یکی ازارزشمندترین فرآورده های شیمی به شمارمی رود.دردنیا بیش از50%پی وی سی تولیدشده درساختمان به کارمی رود.علاوه براین از پی وی سی به عنوان پلاستیک  سخت برای کارت های نوار مغناطیسی ، صفحات گرامافون ، سیستم لوله کشی و کانال نیزاستفاده می شود . همچنین با اضافه کردن افزودنی هایی که اصلی ترین آنها فتالیت است می توان پی وی سی را نرمتروقابل انعطاف ترکرد، آنگونه که امروزه درصنایع پوشاک ولوازم خانگی مانند پرده ، روکش مبل، ساخت شلنگ، لوله نرم وتاشو درکف سازی ساختمان ها و رویه بام ها وعایق سازی کابل های برق استفاده می شود.درآتش سوزی ها ،سیم های روکش شده با پی وی سی، گازهیدروژن کلراید تولید می کنند که کلر به عنوان از بین برنده ی رادیکال های آزاد، منشا موادی که احتراق را به تعویق می اندازد. امروزه این ماده یکی ازمهم ترین مواد ترموپلاستیک است که دربسیاری ازرشته ها ی ساختمانی ، صنعت، کشاورزی و بسیاری ازطرح های زیربنایی از آبرسانی و شهرسازی گرفته تا هواپیماسازی کاربرد های گسترده دارد. افزودن مواد پایدار کننده مانند کلسیم موجب افزایش عمر و مقاومت  پی وی سی در برابرعوامل فیزیکی محیطی و آب وهوایی دراقلیم های متفاوت جوی وثابت بودن رنگ دراثرگذشت زمان تابش نور خورشید می شود.ازگروه موادمصنوعی است . (Unplasticised Poly Vinyl Chloride (U.P.V.C

تاریخچه پیدایش درب و پنجره های upvc ساخت درب و پنجره های upvc

حدودآ درسال 1960 میلادی در اروپا آغاز گردید. با پیشرفت تکنولوژی و افزایش هزینه تولید درب و پنجره چوبی،آهنی و آلمینیومی استفاده از درب و پنجره های upvc رونق روزافزون یافته  است. سهولت ایجادتنوع در طرح و رنگ واستقامت فیزیکی و پایداری در برابر شرایط جوی متفاوت و همچنین قابل بازیافت بودن upvc به کار رفته ساخت این نوع درب و پنجره موجب تحولات عمده ای در این صنعت گردیده است.

تاریخچه تولید درب و پنجره upvc در ایران

در ایران اولین بار در اواخر دهه 50 واحد تولید پروفیل و ساخت درب و پنجره upvc حد فاصل شهرستان های بندرانزلی  و رشت احداث گردید و در سال های بعد واحد های تولیدی دیگری احداث گردید.

هزار دلیل برای استفاده از محصولات upvc

¨        درپنجره های معمولی ازبست های مکانیکی برای اتصال قطعات مختلف درب یا پنجره استفاده می شود وبه طورمعمول تعداد3عدد یا بیشترازورقه های فلزی برای اتصال به یکدیگر پیچ می شوند واگرحتی پیچ ها ازفولاد ضد زنگ باشند براثرایجاد واکنش گالوانیک پنجره ازهم پاشیده و یا از ریخت می افتد.درصورتیکه این مشکل درمحصولات پی وی سی وجود ندارد.پی وی سی ها به دلیل جوش خوردن و گداخته شدن با گرما و چسبیده شدن  به یکدیگر با فشارقوی، دارای مقاومت بسیاری درمقایسه با بست های مکانیکی قابها هستند.

مزایای استفاده از درب و پنجره های upvc

¨      مناسب دربرابرسرما وگرما

¨      کاهش دهنده مناسب شدت صوت

¨      مانع نفوذ گرد وغباروآلودگی های محیطی

¨      کاهش دهنده سرمایه گذاری اولیه و استهلاک سیستم گرمایشی درساختمان

¨      تنوع اشکال بازشو وشکل پذیری متناسب با معماری وفضای ساختمان

¨      صرفه جویی درمصرف انرژی تا40 درصد

¨      کاهش آلودگی صوتی

¨      کاهش آلودگی هوا

¨      کاهش هزینه تاسیسات سرمایشی وگرمایشی درساختمان

¨      درزگیری کامل

¨      تقویت مضاعف با استفاده از پروفیل گالوانیزه درداخل یوپی وی سی

¨      حفاظت ازمحیط زیست ازطریق بازیافت واستفاده درصنایع دیگر

¨      عدم نیازبه سرویس های مکرر(تعویض، رنگ آمیزی و…)

¨      غیرقابل اشتعال بودن

1-قدرت ووزن سبک:

سبک بودن ، قدرت مکانیکی خوب، استحکام دربرابرساییدگی، ازامتیازهای مهم تکنیکی اند که پی وی سی را برای استفاده درساخت وسازمناسب می کند.

2-سهولت درنصب:

پی وی سی به راحتی بریده می شود، شکل می گیرد، جوش داده ومتصل می شود.

3-ضدآتش بودن:

پی وی سی به سختی مشتعل می شود ووقتی عامل حرارت خاموش شود دیگرنمی سوزد.درمقایسه باجایگزین های پلاستیک معمولی، پی وی سی درشرایط جرقه واحتراق، شعله ورشدن و آزادکردن  حرارت، نسبت به سایرموادکم خطرتراست .

دارای مزیت های مهمی است وازنظرنشت کردن اسید، شعله ورشدن و تولید دود کم خطر وضدآتش است.

پی وی سی دربرابرتغییررنگ، فسادشیمیایی، پوسیدگی، ضربه و ساییدگی مقاوم است .ازاین رو به خاطرطول عمرزیاد، درمیان تولیداتی که درمحیط های بیرونی کاربرددارند، انتخاب خوبی به شمارمی رود.درحقیقت برای کاربردهای طولانی ومیان مدت درساخت وساز،85%استفاده ازمحصولات پی وی سی گزارش می شودوبیش از75%لوله های پی وی سی بیش از40سال وباعمربالقوه تاحدود100سال دوام خواهندداشت.درموارددیگرنظیر پروفیل پنجره وروکش های کابل ها مطالعات نشان می دهدکه بیش از60% آنها بیش از40سال عمرخواهندداشت.

پی وی سی درچرخه حیات درمقایسه با سایرمصالح به کاررفته درساخت وسازمطلوب دیده شده است. میزان انرژی صرف شده ومیزان استفاده از ذخایر برای تولید و تبدیل آن به محصول تمام شده، در مقایسه با سایرمصالح پایین است.

به عنوان ترموپلاستیک، پی وی سی رامی توان به صورت جداگانه و یا مخلوط با سایر پلاستیک ها بازیافت کرد.

تولیدات ساختمانی پی وی سی درمقایسه بابتن وآهن وفولادسبک ترند وبه مراتب کم ترازآنها به سوخت نیازدارند، مقاوم اند ودرصورت لزوم می توان پی درپی آنها را تعویض کرد وعایق حرارتی بودن پنجره ها به صرفه جویی انرژی درساختمان کمک می کند.

6-عایق خوب

جریان برق ازپی وی سی عبورنمی کند وبه همین دلیل ماده خوبی

برای روکش کابل هابه شمارمیرود.

7- انطباق پذیری (چندمنظوره بودن)

ویژگی های فیزیکی پی وی سی باعث میشوددرطراحی محصول جدیدوپیداکردن راه حل،ازپی وی سی به جای ماده جایگزین بامرمت کننده استفاده شود.پی وی سی برای داربسشت بیلبوردها، ووسایل طراحی داخلی، چارچوب پنجره ها،سیستم آب رسانی ، روکش کابل ها و…کاربرددارد.

ازجمله موادافزودنی که کیفیت پی وی سی راشدیداتحت الشعاع قرارمی دهد و باید به مقدار کافی درفرمولاسیون به کارگرفته شود:

پرکننده ها(fillers): که مقاومت ،الاستیسیته،چروکیدگی و سایر خواص محصول نهایی را تحت تاثیر قرار می دهند.

روان سازها: که جهت کمک به جریان مواددرقالب،هنگام عملیات اکستروژن وهمچنین ایجادسطح صیقلی وشفاف در پروفیلتولیدشده به کاربرده میشوند.

تثبیت کننده های حرارتی ورنگی

مقاومت پروفیل را دربرابرحرارت افزایش داده وباعث جلوگیری ازآسیب دیدن درب و پنجره ها در مجاورت هوای آزاد و حرارت حاصل از تابش خورشید می شوند و همچنین ازتغییرات رنگ و خراب شدن پروفیل دربرابراشعه ی ماورابنفش جلوگیری می کند.

Impact modifiers

افزایش پروفیل تولیدی دربرابرضربه وانعطاف پذیری بیشترمیشود.دی اکسیدتیتانیوم که علاوه برتنظیم شفافیت رنگ پروفیل تولیدی موجب بازتابش پرتوهای ماورابنفش میشود.

 

Recent Comments

    Back to Top

    Follow us on Twitter to receive updates regarding network issues, discounts and more.
    2019 © خط تولید پروفیل یو پی وی سی- اکسترودر تک و دوماردون – اکستروژن لوله و پروفیل و سیستم کامپوندینگ بازیافت مواد – سیلندر و ماردون دستگاه تزریق و اکسترودر. Powered by Wordpress. Theme by Serifly.