اکستروژن پلاستیک

آبیاری قطره ای- مزایای نوار آبیاری قطره ای – لوله های آبیاری قطره ای

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on آبیاری قطره ای- مزایای نوار آبیاری قطره ای – لوله های آبیاری قطره ای

این روش در دهه پنجاه ترویج شد و سطوح بزرگی با این روش آبیاری شدند ولی با مرور زمان مزایا و معایب این روش مشخص شد. هزینه‌های زیاد و تکنیک‌های نسبتاً پیشرفته این روش و نمک‌ها و مواد جامد معلق در آبهای ایران (که سبب گرفتگی قطره چکان‌ها می‌شوند) از معایب آبیاری قطره‌ای بوده و باعث شده که کشاورزان با دقت و تحقیقات بیشتری از این روش آبیاری استفاده کنند؛ ولی این موارد دلیل نمی‌شود که روش آبیاری قطره‌ای را مطرود بدانیم و در پی رفع معایب آن باشیم.

مهمترین تفاوت آبیاری قطره ای با سایر روش‌های آبیاری در این است که بین تبخیر-تعرق و مقدار آبی که باید به زمین داده شود، در یک دوره زمانی محدود(۲۴ تا ۷۲ ساعت) توازن برقرار می‌شود. این امر باعث می‌شود با توجه به محدود بودن میزان آب در دسترس، بیشترین بهره وری از آب انجام پذیرد. از آنجا که سیستم‌های آبیاری موضعی/قطره‌ای ثابت هستند، خودکار کردن بسیاری از آنها آسان است. این سیستم‌ها برای مدیران آبیاری که قصد اختلاط کود و آب (کود آبیاری) را درون سیستم آبیاری دارند، مناسب هستند.

ابزارهای آبیاری قطره ای

منبع آب، پمپ، فیلتر سیکلون، فیلتر شن، تانک کود، مرکز کنترل، فیلتر توری، لوله اصلی، لوله آبرسانی، لوله‌های جانبی یا لوله‌های فرعی (لاترال‌ها)، قطره چکان.

طرز کار شبکه آبیاری قطره ای

آب توسط پمپ از منبع آب به داخل شبکه پمپ شده و ضمن عبور از سیکلون، شن و مواد خارجی خیلی درشت آن ته نشین می‌شود. در فیلتر بقیه مواد جامد معلق در آب گرفته می‌شود. بخشی از آب وارد تانک کود شده با حل مقداری کود در آب این محلول از انتهای دیگر تانک خارج و مجدداً وارد جریان اصلی آب می‌گردد. آب پس از عبور از فیلترتوری وارد لوله‌های توزیع کننده شده و مرکز کنترل این مجموعه را هماهنگ می‌کند. در حال حاضر این روش آبیاری برای محصولات گران قیمت اقتصادی بوده و گیاهان گلخانه‌ای و کلیه گیاهانی که کشت آن زیر پلاستیک صرفه اقتصادی داشته باشد امکان پذیر است. ولی برای غلات، حبوبات، گیاهان علوفه‌ای و سایر محصولاتی که قیمت آن پائین است صرف نمی‌کند.

لوله نواری دریپر سرخودی است كه به سادگی و به سرعت نصب می گردد و از كارایی بالایی برخوردار می باشد.

این لوله به گونه ای طراحی شده است كه روزنه های ورودی آب، لوله زیگزاكی كناری، دریپر، یك واحد منسجم را تشكیل می دهند. آب از روزنه های ورودی آب به داخل لوله زیگزاكی كه برای پایین آوردن فشار خروجی آب پیش بینی شده است هدایت می شود. این روزنه ها خود به صورت یك صافی عمل كرده و از ورود ذرات معلق احتمالی موجود در آب به مجرای زیگزاك جلوگیری می نماید. یعنی در عمل هر قطره چكان بطور جداگانه دارای یك فیلتر و یك مجرای پایین آورنده قشار بوده كه به صورت مستقل عمل كرده و در فشار مشخص دبی خروجی آن ثابت می باشد.

مزایای نوار آبیاری قطره ای :

– صرفه جویی در مصرف آب، كود، سموم و انرژی
– كاهش هزینه ها، فرسایش خاك، ضایعات محصول و نمك به هنگام شوری آب و در نهایت اقتصادی بودن تولید
– كنترل دقیق رطوبت عمومی مزرعه و میزان مصرف آب، كود و سموم
– قیمت مناسب، نصب و جمع آوری سریع و آسان
– رشد و رسیدن یكنواخت و افزایش عملكرد و كیفیت محصول
– مدیریت دقیق شوری آب و خاك
– بهبود كیفیت و تهویه خاك و عدم ایجاد سله و روان آب
– استفاده بهینه از سطح زیر كشت

موارد استفاده نوار آبیاری قطره ای :

كلیه محصولات زراعی اعم از :
گیاهان صنعتی : چغندرقند، پنبه، نیشكر، ذرت، آفتابگردان، سویا، كلزا و …
صیفی و سبزی : سیب زمینی، پیاز، هندوانه، خربزه، گوجه فرنگی، خیار، كدو، بادمجان، گل كلم، كاهو، فلفل، هویج و …
غلات : گندم، جو، برنج، ترتیكاله، چاودار و …
حبوبات : عدس، نخود، انواع لوبیا، ماش، نخودفرنگی و …
گلخانه‌ها : كشت خاكی و هیدروپونیك (كشت بدون خاك)
باغات : درختان سیب پایه مالینك، اسمالینك، كیوی، نهال كاری، تاكستان ها، چای، جنگلكاری و درختانی كه فاصله كشت آنها كمتر از 3 متر در ردیف می باشد.
گلكاری : مزارع گل، فضای سبز

فرایند تولید پروفیل UPVC

Posted by roueen in اکستروژن پلاستیک on June 18, 2015 with Comments Off on فرایند تولید پروفیل UPVC

درمرحله اول PVC و افزودنيهاي ديگر،

با درصد مشخصي توسط دستگاه ميكسر تركيب سرد و گرم مي شوند. مواد تركيب شده بين 16 تا 24 ساعت دردماي محيط مي ماند تا الكتريسيته ساكن حاصل از ميكس از بين برود و دماي آن با دماي محيط يكسان شود. مواد پس از مرحله ميكس به صورت اتوماتيك وارد دستگاه هاي اكسترودر ميشود. پس از تنظيم و نصب قالب پروفيل مورد نياز و همچنين قسمتهاي كاليبراتور و تانكهاي خنك كننده مي بايست دماي سيلندر و دستگاه اكسترودر و قالب به حد معين برسد اين ميزان دما بسته به نوع سطح مقطع پروفیل متفاوت است كه معمولاً براي سيلندر بين 165 تا 185 و براي قالب بين 198تا 202 درجه ميتواند متغير باشد .

اما متاسفانه برخی از صنعتگران ایرانی فقط به مواد تشکیل دهنده محصول تولیدی توجه دارند و به فرایندهای تولید از قبیل دمای مورد نیاز برای هر قسمت ، شرایط تولید در خلاء یا در محیط حاوی گازهای خاص ، مدت زمان و سرعت انجام هر فرایند ، میزان فشار ، ترتیب ترکیب مواد، مقدار هر ماده و … توجه ندارند ، در اینصورت با وجود استفاده از مواد یکسان نتیجه مطلوب حاصل نمی شود .

دستگاه اكسترودر شامل دو عدد مارپيچ با چرخش غير همسو مي باشد كه مواد رابه صورت يكنواخت از قسمت سيلو به طرف قالب هدايت مي كند. سيلندر دستگاه شامل چهار قسمت مي باشد كه هر كدام به ترتيب وظيفه پيشگرم كردن مواد ، پلاستيسيته كردن ( تبديل مواد به شكل خميري )، خروج گازهاي متصاعد شده و در نهايت شكل گيري پروفیل را به عهده دارند .پس از خروج پروفیل از قسمت كاليبره و تانكهاي خنك كننده اطلاعات مربوط به پروفیل روي آن حك مي شود.

سرانجام  پروفیل UPVC وارد قسمت اره شده و در ابعاد مورد نظر برش داده و بسته بندي مي گردد.

به علت خواص فيزيكي متفاوت اين ماده جديد اصطلاحا به آن يك ماده غير پلاستيك (Unplasticised) اطلاق مي شود.

سبكي وزن، خمش پذيري، عدم اشتعال، عايق بودن در مقابل حرارت و الكتريسيته، مقاومت در برابر مواد شيميايي و بيولوژيك، قابليت تبديل به سطوح سيقلي، قابليت تلفيق با مواد افزودني مختلف و بالاخره انعطاف پذيري در به كاربردن طرح هاي متعدد، UPVC را به یک نوع ترموپلاست مدرن که مناسب ترين جايگزين براي آلياژهاي فلزي و غير فلزي در صنعت در و پنجره سازي است تبديل نموده است .

مواد تشكيل دهنده پروفیل UPVC

اصلی ترین ماده مورد نیاز جهت تولید پروفیلهای یو پی وی سی , (PolyVinil Choloride ) یا PVC با K-Value حدود ۶۵می باشد . پی وی سی یا پلی وینیل کلرايد یکی از قدیمی‌ترین و پر مصرف ‌ترین انواع پلیمرها در جهان است که از پلیمریزاسیون مونومر وینیل کلراید (VCM) بدست می‌آید و تقریبا ۸۵% از ترکیب پروفيلهای UPVC را تشکیل می دهد.

پي وي سي ترکيبي از مشتقات نفت خام و گاز کلر می باشد که طي فرآيند پليمريزاسيون توليد مي شود. در فرآیند پلیمریزاسیون پیوند دوگانه بین کربن- کربن شکسته می‌شود و از اتصال مونومرهای وینیل کلراید به یکدیگر پلیمر پی وی سی تشکیل می‌گردد.

اين ماده در دو نوع امولسيون و سوسپانسون توليد می گردد که نوع سوسپانسيون، به دو گروه سخت و نرم تقسيم مي شود. نوع سخت داراي K- Value یا شاخص وزن ملکولي 67 – 65 و نوع نرم آن بين 71 – 68 است.

پي وي سي نوع سخت به دليل ميزان کم جذب مواد نرم کننده (DOP) به نوع Unplastisized معروف است .

منظور از UPVC  همان پلی وینیل کلراید غیر پلاستیک شده است Normal 0 false false false EN-US X-NONE FA یعنی Unplasticized Poly Vinyl Chlorideاین ماده خواص فیزیکی متفاوتی را نسیت به پی وی سی دارا می باشد.

در فرآیند تولید UPVC برای بالا بردن کیفیت محصول نهایی مواد افزودنی خاصی به پودر پی وی سی (پلی وینیل کلراید) افزوده می شود که باعث ایجاد خواص جامد در آن می شود این افزودنی ها از قرار زیرند:

ضربه گیرها (Impact Modifier)ضربه گیرها یا مقاومت دهنده ها باعث ایجاد خواص مکانیکی در محصول می گردند و مقاومت یو پی وی سی را در برابر ضربه و چکش خاری افزایش داده و باعث افزایش انعطاف پذیری آن می گردند.
تثبیت کننده ها یا مواد ضد احتراق (Heat Stabilizers)ثبات دهنده یا Stabilizer باعث ایجاد مقاومت در برابر حرارت در پروسه تولید (اکستروژن) و همچنین مقاومت محصول نهایی در برابر حرارت محیط می گردد .  تثبیت کننده های حرارتی مقاومت پروفیل را در مقابل  حرارت افزایش داده باعث جلوگیری از آسیب دیدن درب وپنجره ها در مجاورت هوای آزاد وحرارت حاصل از تابش خورشید می گردند. تثبیت کننده های رنگی از تعقییرات رنگ وخراب شدن پروفیل در مقابل اشعه ماورا بنفش UV جلوگیری می کند.
پر کننده ها(Fillers)

فیلرها نیز بمنظور افزایش خواص مکانیکی و همچنین کاهش قیمت تمام شده محصول استفاده می شوند. کربنات کلسیم   (CaCO3)  یکی از رایج ترین فیلرهای قابل استفاده در این صنعت می باشد که دانه بندی و همچنین پوشش دار بودن (Coated) آن باید رعایت شود.معادن کربنات کلسیم به وفور در ایران وجود دارد و شرکت های مختلف در استخراج و دانه بندی آن فعالیت می کنند البته اندازه دانه بندی شرکت های ایرانی به دقت دانه بندی شرکت های خارجی نمی باشد و عموما مش بندی ها واقعی نمی باشند .

فیلرها مقاومت ، الاستیسیته ، چروکیدگی وسایر خواص محصول نهایی را تحت تاثیر قرارمیدهند .
کمک کننده ها  (Processiny Aids)

کمک فرایندها بمنظور تسهیل در ذوب وشکل دهی مواد بکار میروند .
روان کننده های داخلی و خارجی (Internal & External Lubricants)
روانسازها یا Lubricants جهت کمک به جریان مواد در قالب حین عملیات  اکستروژن و همچین جهت ایجاد سطح صیقلی وشفاف درپروفیل تولید شده بکار برده می شود .
رنگ های صنعتی  (Pigment)

رنگ دانه ها جزئی از ترکیب محصول هستند که باعث ایجاد تنوع در مصول نهایی می شوند . رنگ دانه دی اکسید تیتانیوم (TiO2)  باعث ایجاد مقاومت در برابر رنگ پریدگی در اثر اشعه UV خورشید می گردد و نقش مهمی را در پروفیلهای یو پی وی سی ایجاد می کند . دی اکسید تیتانیوم علاوه بر باز تابش اشعه ماورای بنفش باعث تنظیم شفافیت رنگ پروفیل نیز می گردد.

به  ترموپلاست جدید بوجود آمده که ترکیب جدیدی از ماده اولیه PVC است ؛ به علت خواص فیزیکی متفاوت اصطلاحا یک ماده غیر پلاستیک اطلاق می شود.
عدم وجود هر یک ازافزودنی ها و یا تغییر میزان بکار رفته در فرمولاسیون , می تواند خواص محصول نهایی تولید شده را بشدت تحت تاثیر قراردهد.
رزین (پودر) پی وی سی (پلی وینیل کلراید) که در این صنعت قابل استفاده می باشد، رزین نوع S و با گریدهای (K Value)  بین 64 تا 68 قابل استفاده می باشد. هر چه شماره گرید بالاتر باشد، میزان مقاومت مولکولی محصول نهایی بالاتر بوده و برای استفاده بعنوان یک جز از مصالح ساختمانی بهتر است. این محصول با گرید 65 در پتروشیمی بندر امام ایران تولید می گردد و در اختیار تولید کنندگان قرار می گیرد . اما نوع وارداتی آن هم وجود دارد.

شکل فیزیکی پی وی سی به صورت پودر سفید بوده و نوع دانه بندی آن بسته به روش پلیمریزاسیون متفاوت است.

درجه پلیمریزاسیون پی وی سی بسته به مدت زمان فرایند آن تغییر می‌کند و هر چه زمان پلیمریزاسیون بیشتر شود، طول زنجیرها‌ی پلیمر بلندتر می‌گردد. برای نمایش درجه پلیمریزاسیون از شاخصی به نام K-Value استفاده می‌گردد که رابطه این شاخص با درجه پلیمریزاسیون به شرح جدول زیر است:

PVC Degree of Polymerization

K-Value                  DP

50 ± 500             53

50 ± 700             57

50 ± 730             58

50 ± 800             60

50 ± 1000           65

50 ± 1050           67

50 ± 1250           70

استانداردهاي پروفیل UPVC

پروفیل های یو پی وی سی که از دهه 60 در اروپا تولید شده اند و در صنعت در و پنجره ساختمان بکارگرفته شده اند، دارای دو استاندارد اصلی می باشند. استاندارد کشور انگلستان که بعنوان استاندارد اروپا نیز مورد استفاده قرار می گیرد با عنوان BS EN 12608 که آخرین ویرایش آن سال 2003 می باشد. استاندارد دیگر که استاندارد سختگیرانه تری می باشد، استاندارد کشور آلمان و با عنوان RAL GZ 716-1  و آخرین ویرایش آن سال 2008 می باشد.

استانداردهای BS و RAL از دیدگاه های مختلف پروفیل های یو پی وی سی را بررسی می کنند که یکی از نکات مهم در آنها استاندارد ضخامت دیواره های اصلی و دیواره های رابط بین آنها (دیواره فرعی) در پروفیل می باشد.

در هر دو این استانداردها ضخامت بالاتر از 2.8 میلیمتر در دیواره اصلی و همچنین ضخامت بالاتر از 2.5 میلیمتر در دیواره فرعی بعنوان پروفیل های نوع A ویا کلاس یک در نظر گرفته می شوند. ضخامت های بالاتر از 2.5 در دیواره اصلی و بالاتر از 2 میلیمتر در دیواره فرعی نیز بعنوان پروفیل های نوع B و یا کلاس دو مطرح می شوند. در استاندارد رال همین دو نوع پروفیل از نظر ضخامت دیواره معرفی و بررسی می شوند ولی در استاندارد BS نوع سومی نیز تعریف شده است که بر اساس توافق بین سازنده و خریدارپروفیل استانداردی تعریف شود که به آن C گفته می شود. در این کلاس هیچ محدوده ای برای ابعاد در نظر گرفته نشده است و ملاک ابعاد اعلامی توسط تولید کننده است.

مرکز تحقیقات ساختمان و مسکن ایران هم بعنوان متولی تدوین استاندارد ملی تجهیزات و مصالح ساختمانی، تحقیقات و مطالعات گسترده ای در این زمینه صورت داده است و  استاندارد BS EN 12608 را بعنوان استاندارد مناسب انتخاب و ترجمه نموده است که در نهایت جهت انتشار کمیته ملی استاندارد در اختیار سازمان استاندارد و تحقیقات صنعتی قرار گرفته است.

مباحثی که در استانداردها مورد بررسی و آزمون قرار می گیرند به شرح زیر می باشند:

– ابعاد و اندازه های پروفیل

– وزن پروفیل

– ظاهر و شرایط ارسال

– شرایط آب و هوایی و آزمون های آن

– آزمون مواد اولیه

– آزمون های حرارتی پروفیل

– مقاومت پروفیل در برابر ضربه

موارد فوق بصورت جامع در استانداردهای RAL و BS ذکر شده و در استاندارد ملی ایران نیز درج شده اند.

نقش تیتان در پروفیل UPVC

تیتان(دی اکسید تیتانیوم) مهم‏ترین رنگدانه یا ماده رنگی است که برای آن دسته از محصولات پی‌وی‌سی که استفاده خارجی دارند، استفاده می‏شود. این ماده از اهمیت ویژه‌ای در صنعت پروفیلهای یو پی وی سی در و پنجره برخوردار است وعلاوه بر رنگ کردن ذرات PVC سبب بالا بردن اثر حفاظتی در برابر UV نیز می‏شود.

دی‌اکسید تیتانیوم به فرم‌های مختلفی در طبیعت یافت می‏شود و انواع آن بر اساس فتو اکتیویتی طبقه‌بندی می‏ شوند.

دو نوع مشهور آن آناتاس و روتایل است. روتایل یکی از سنگ‌های معدنی اصلی دی‌اکسید تیتانیوم است. وزن سبک، قدرت بالا و مقاومت نسبت به خوردگی از مشخصات این ماده است.

تیتان مورد استفاده در صنعت تولید پروفیل یو پی وی سی در و پنجره بایستی مشخصات ویژه‌ای داشته باشد. تنها نوع مطلوب آن برای این صنعت، نوع روتایل آن است که دارای خواص عملکردی متفاوتی با نوع آناتاس است. از آنجایی که این دو نوع تیتان اختلاف قیمت قابل ملاحظه‏ ای دارند، برخی از تولیدکنندگان پروفیل یو پی وی سی در و پنجره با تصور اینکه هر دو نوع محصول، یک قابلیت را دارند، از نوع آناتاس استفاده می‏کنند.

پروفیل های در و پنجره‌ای که از تیتان آناتاس در آن استفاده شده باشد، آزمایش‏های موسسه RAL آلمان را با موفقیت پشت سر نخواهند گذاشت.

از طرف دیگر رنگ این نوع پروفیل یو پی وی سی ، دوامی حداکثر یک ساله خواهد داشت.

آناتاس و روتایل دارای فرمول شیمیایی یکسان (TiO2) و تقارن هندسی یکسان )تتراگونال) هستند. ولی ساختارهای متفاوتی دارند. ساختار آناتاس در دمای بالاتر از 915 درجه سانتی‌گراد، به‌طور اتوماتیک به ساختار روتایل تغییر می‏کند. روتایل نسبت به آناتاس  شناخته شده‌تر است.

باید در نظر داشت که رنگ پی‌وی‌سی بر جذب اشعه مادون قرمز (زمانی که محصول در برابر نور خورشید باشد) تاثیر دارد.

هرچه رنگ تیره‌تر باشد مقدار جذب و دما نیز بالاتر است. از طرف دیگر رنگدانه‌ها اثر نامطلوبی بر عملکرد نظیر اضمحلال، انعطاف‌پذیری، تغییر شکل، قدرت مکانیکی و مقاومت شیمیایی دارد. این موضوع اهمیت استفاده از رنگدانه‌های استاندارد را نشان می‌دهد.

از این رو انتخاب غلظت دی‌اکسید تیتانیوم نیز باید با درک روشنی از موضوع انجام پذیرد . مخلوط کردن دی‌اکسید تیتانیوم با سایر رنگدانه‌ها ممکن است منجر به نتایج غیرقابل انتظاری شود.

برای جلوگیری ازعمل کاتالیزوری تیتان که باعث اضمحلال «پی‌وی‌سی» می شود، باید یک پوشش سطحی که معمولا شامل زیرکونیوم، سیلیکا و آلومینیوم هستند نیز در پروفیل استفاده شود

به دلیل گران بودن دی‌اکسید تیتانیوم ، سعی در یافتن جایگزینی برای آن شده است. آزمایش‌هایی با «اکسید مگنزیوم» انجام گرفت. اما نتیجه آزمایش نشان داد که کشیدگی

پروفیل UPVC حتی با استفاده از مقادیر کم این اکسید به شدت کاهش می‌یابد.

 

پروفیل UPVC چیست ؟ شیشه های دو جداره و تولید درب و پنجره UPVC

Posted by roueen in اکسترودرها on June 18, 2015 with Comments Off on پروفیل UPVC چیست ؟ شیشه های دو جداره و تولید درب و پنجره UPVC

پروفیل UPVC چیست ؟

مواد اصلی UPVC را نفت خام و نمک طعام تشکیل میدهند . از نفت خام ، اتیلن و از نمک ، کلر بدست می آید و از طریق پلیمر یزاسیون ، کلر، اتیلن ، وینیل کلرید با هم ترکیب و پلی وینیل کلرید یا بصورت خلاصه PVC بدست می آید. که ماده ای پلاستیکی و قابل ارتجاع است.

امروزه PVC در کنار پلی اتیلن- پلی پروپیلن- پلی استیرول به عنوان یک ماده استاندارد در زمینه های مختلف کاربرد فراوانی دارد.

فرایند تولید پروفیل UPVC

این فرایند شامل دو مرحله اصلی می باشد:

1- مرحله میکس و آماده سازی مواد اولیه در دستگاه میکسر

2- مرحله شکل دهی و تولید پروفیل در دستگاه اکسترودر

در مرحله اول PVC و  افزودنی های دیگر ، با درصد مشخص توسط دستگاه میکسر ترکیب سرد و گرم می شود . مواد ترکیب شده بین 12 تا 24 ساعت در دمای محیط می ماند تا الکتریسیته ساکن حاصل از میکس از بین برود و دمای آن با دمای محیط یکسان گردد .

مواد پس از مرحله میکس به صورت اتوماتیک وارد دستگاههای اکسترودر میشود . پس از تنظیم و نصب قالب پروفیل مورد نیاز و هم چنین قسمت های کالیبراتور و تانک های خنک کننده می بایست دمای سیلندر و ددستگاه اکسترودر و قالب به حد معین برسد . این میزان دما بسته به نوع سطح مقطع پروفیل متفاوت است که معمولا برای سیلندر بین 165 تا 185 درجه سانتیگراد و برای قالب بین 198 و 202 درجه سانتی گراد میتواند متغیر باشد . دستگاه اکسترودر شامل دو عدد مارپیچ با چرخش غیر همسو میباشد که مواد را به صورت یکنواخت از قسمت سیلو به طرف قالب هدایت میکند . سیلندر دستگاه شامل چهار قسمت می باشد که هر کدام به ترتیب وظیفه پیشگرم کردن مواد ، پلاستیسیته کردن تبدیل مواد به شکل خمیری خروج گازهای متصاعد شده و در نهایت شکل گیری پروفیلرا به عهده  دارند ، پس از خروج پروفیل از قسمت کالیبره و تانک های خنک کننده اطلاعات مربوط به پروفیل روی آن حک میشود . در نهایت پروفیل وارد قسمت برش شده در ابعاد 6 متری برش داده و بسته بندی می گردد .

معرفی اجزای پنجره

1- قاب و بازشو پنجره از جنس یو.پی.وی.سی

2- زهواره یو.پی.وی.سی

3- لاستیک درزبندی ای.پی.دی.ام

4- پروفیل گالوانیزه

5- شیشه با یراق

6- یراق آلات

نمونه ای از مقاطع پروفیل UPVC

مونتاژ درب و پنجره های UPVC

پروفیلهای مورد نظر با توجه به نوع سفارش درب و پنجره انتخاب شده و پس از انجام محاسبات دقیق و مهندسی و آنالیز ابعاد درب و پنجره ، طبق نقشه برش داده می شوند. سپس تعدادی از این پروفیلها به منظور ایجاد شیار آب به دستگاه مربوطه منتقل می شوند.

همزمان باعملیات برش پروفیل UPVC و ایجاد شیار آب ، پروفیل های گالوانیزه برش داده شده و درون آنها با پیچ محکم می شوند. بمنظور مقاوم سازی و تقویت درب و پنجره های تولیدی ملزم به استفاده از پروفیل گالوانیزه با ضخامت مناسب در داخل خانه اصلیپروفیل UPVC می باشیم. بکارگیری پروفیل گالوانیزه در داخل پروفیل اصلی UPVC و پیچ شدن یراق آلات روی قطعات تقویت شده، ضمن کاهش خطر افتادگی بازشوهای پنجره، مقاومت درب و پنجره های ساخته شده از پروفیل UPVC را افزایش می دهد

در ادامه در صورت نیازبه نصب دستگیره و یراق آلات (برای بخشهای باز شو) سوراخها و شیارهای مورد نیاز توسط دستگاه روی پروفیلتعبیه می شود. سپس پروفیل ها طبق نقشه توسط دستگاه جوش به یکدیگر متصل می شوند و با انتقال به دستگاه بعدی، پلیسه ها و زوائد ناشی از جوش در زوایای مختلف از بین می رود.

در نهایت روی میز کار پس از تمیز کاریهای جزئی و نهایی، یراق آلات روی درب و پنجره نصب میگردد. هر پنجره با توجه به شعاع باز شو و بسته به ابعاد آن یراق آلات مخصوص به خود را دارد که در قسمتهای قاب و لنگه پنجره نصب می گردند.این یراق آلات ازکیفیت بالا برخوردار بوده و از لحاظ مقاومت در مقابل خوردگی بعنوان یکی از مهمترین خواص یراق آلات در رده مورد قبول استانداردهای اروپایی میباشد همچنین استاندارد امنیت در مقابل سرقت نیز در یراق آلات مورد استفاده رعایت شده است

اندازه گیری و نصب پنجره های UPVC

پنجره های UPVC قابلیت نصب روی قاب های فلزی (Sub Frame ) و سازه های سیمانی، آجری و … را دارد، در زمان آماده بودن درگاه پنجره عملیات اندازه گیری بوسیله ابزار مناسب اعم از مترهای لیزری، مترهای نواری و سایر ابزار دقیق با دقت بالا اندازه گیری و جهت تعیین نقشه پنجره ها به واحد طراحی ارائه میگردند

نصب پنجره های UPVC ارتباط مستقیم با دوام و عملکرد این نوع از پنجره ها دارد، عملیات نصب باید به گونه ای انجام شود که اهداف زیر حاصل گردند:

1-   قابلیت تحمل بارهای زنده و مرده
2- جلوگیری از تبادل صوت و حرارت
3- باز و بسته شدن مطمئن
4- تمیز کردن درگاه نصب
5- جایگذاری پنجره و تراز کردن آن
6- انجام سوراخ کاریهای لازم
7- ثابت کردن پنجره در محل نصب با استفاده از پیچهای مناسب
8- نصب شیشه ها و جا انداختن زهواره
9- درزبندی نهایی با استفاده از تزریق فوم و سیلیکون
10- رگلاژ نهایی

استانداردهای تولید وآزمایشات مواد اولیه

برای تولید پروفیل میتوان از مواد اولیه دست نخورده ، مواد بازیافت شده و مواد قابل بازیافت استفاده نمود. کاربرد این مواد با توجه به استاندارد کیفیت RAL-GZ 716/1 تحت شرایط و آزمایشات خاصی قابل قبول میباشد.

کاربرد مجدد مواد با فرمول یکسان توسط همان کارگاهی که قبلاً آنها را تولید کرده در صورتی که به کیفیت پروفیل ها صدمه نزنند و عاری از هر گونه مواد نرم کننده و مواد خارجی باشند تحت شرایط خاصی امکان پذیر میباشد.

مواد بازیافت شده و قابل بازیافت کاربرد مواد اولیه دست نخورده استاندارد نوع آزمایش
≥ 71 °C ≥ 75 °C DIN EN ISO 306 دمای نرمی ویکات VST/B50
≥ 20 Kg/m² ≥ 20 Kg/m² DIN EN ISO 179,1eA مقاومت ضربه ای چارپی
≥ 2000 N/mm² ≥ 2200 N/mm²  DIN EN ISO 178

DIN EN ISO 527-1-3

مدول الاستیسیته مدول خمشی Ef مدول کششی Et
≥ 30 min   DIN 53381-1 زمان پایداریtst

آزمایشات مربوط به پروفیل تولیدی

1- شکل ظاهری و شرایط تولید

حین فرآیند تولید انواع سطح مقطع پروفیل ، تعداد نمونه های مشخصی جهت انجام آزمایشات از تولید اخذ می گردد. این نمونه ها پس از بررسی شکل ظاهری بمدت 12 تا 24 ساعت در آزمایشگاه نگهداری شده و سپس مورد تستهای مختلف طبق استاندارد RAL GZ 716/1 قرار می گیرد.سطوح خارجی پروفیل ها که در معرض دید قرار دارند لازم است دارای رنگ سفید یکنواخت بوده و عاری از هر گونه اجسام خارجی ، حفره ، ترک ، حباب و سایر معایب باشند .

2-مقاومت در برابر ضربه ناشی از سقوط جرم در دماهای پایین:(Impact resistance by falling mass at low temperature)

در این آزمایش ابتدا 10 نمونه cm 30 در دستگاه Freezer قرار داده و تا دمایc º 15به مدت حداقل یکساعت نگهداری می شوند سپس توسط جرم kg 1 از ارتفاع mm 1500 مورد تست ضربه قرار می گیرند .  طبق استاندارد RAL   نباید بیش از 10%  از نمونه ها ( بیش از یک پروفیل ) شکسته شود.

3-رفتار پس از گرم شدن :                    (Behavior after heating)

cm 22 به مدت نیم ساعت در دمای ºc 150 گرم شده سپس در دمای محیط خنک می گردد و پس از انجام آزمایش نمونه باید فاقد هر گونه تغییر شکل ظاهری (اعم از چروک، ترک، …) باشد.

4-تست جرم واحد طول:

نمونه mm 250   با دقت mm 1 اندازه گیری شده و جرم آن با دقت gr 1 سنجیده می شود. جرم واحد محاسبه شده نباید کمتر از 95% مقدار اسمی آن طبق استانداردهای ارائه شده باشد.

5- برگشت حرارت:    (Heat reversion)

سه مقطع پروفیل mm220 انتخاب و با دو خط به فاصله تقریبی mm 200 در دو سمت سطح به صورت عمود بر محور پروفیل نشان گذاری می شوند. این نمونه ها پس از نشانه گذاری در کوره با دمای ºc 100 به مدت یکساعت قرار میگیرد. و پس از خنک شدن در دمای محیط مجدداً نشانه ها اندازه گیری می شود. برای هر نمونه و هر جفت علامت، ضریب برگشت حرارت به درصد محاسبه می شود.

طبق استاندارد RAL جهت پروفیل های فرعی نباید درصد اختلاف برگشت حرارت بیش از 3% و برای پروفیلهای اصلی بیش از 2% باشد. ضمناً برای پروفیل های اصلی اختلاف درصد برگشت حرارت بین دو طرف سطح نیز نباید بیشتر از 4/0 % باشد.

6- تست ابعاد و هندسه پروفیل

ابعاد بیرونی و عملی سطح مقطع پروفیل ها همچنین ضخامت جداره های داخلی و هندسه پروفیل با استفاده از ابزارهای با دقت زیاد،  اندازه گیری و با استانداردهای ارائه شده مقایسه می گردد.

7- تست کجی

به منظور اندازه گیری انحراف محور طولی پروفیل ، دو نمونه mm 1000 به صورت آینه وار روی یکدیگر قرار می گیرند و با وسیله اندازه گیری دقیق فاصله ایجاد شده در تمام محور طولی دو پروفیل اندازه گیری می شود. این انحراف نباید از mm 1 در کل طول یکمتر تجاوز کند.

8- تست جوش:

سطح مقطع های پروفیل پس از مرحله جوش به صورت نمونه در آزمایشگاه تحت تست جوش قرار می گیرند. بر اساس استاندارد RAL هر یک از این سطح مقطع ها باید تحت نیروی مشخصی که محاسبه شده است به مرحله شکست برسند و در صورتیکه زودتر از میزان نیروی تعریف شده پروفیل شکسته شود محموله تولیدی مردود شناخته خواهد شد.

تاریخچه پیدایش شیشه های دو جداره

استفاده از شیشه توسط رومی ها در حدود هزار سال قبل از میلاد مسیح رایج بوده است و استفاده عمومی از آن نیز به حدود 200 سال قبل باز می گردد که از آن زمان شیشه ها با ابعاد مختلف وارد زندگی عموم مردم گردیدند.

در سال 1865 میلادی صاحب یک مغازه شیشه فروشی در شهر نیویورک با ابتکار خویش حق ثبت و امتیاز بهره برداری از شیشه های عایق دوجداره غیر نفوذ در ایالت متحده را بدست آورد. او با مطالعه و آزمایش اثبات کرد که با استفاده از شیشه های دو جداره می توان از خروج گرما و سرمای داخل ساختمان به خارج جلوگیری کرد و هوای داخل محیط را بهتر محافظت نمود. پنجره های دارای دو یا چند جداره استاندارد، از اتصال دو یا چند شیشه که بطور موازی در مقابل یکدیگر برای روی یک چهارچوب پروفیل آلومینیومی قرارگرفته اند تشکیل شده است.

امروزه دیوارهای خشتی و گلی ستنی جای خود را به دیواره های شیشه ای مرتفع براق و درخشان داده اند . این سطوح زیبای رنگی به گونه ای طراحی و اجرا شده اند که بخوبی می توانند در برابر سرما و گرمای محیط خارجی مقاومت کرده و ضمن حفظ زیبایی محیط ، آسایش و اطمینان را برای استفاده کنندگان به ارمغان آورند.

در صنعت معماری نوین ، دیوارهای ساخته شده از جنس شیشه های رنگارنگ رفلکس مورد علاقه و توجه زیاد استفاده کنندگان قرارگرفته است.

فرایند تولید شیشه دو جداره

در ابتدا جامهای شیشه بوسیله دستگاه حمل بر روی رکهای دستگاه حمل اتوماتیک قرار گرفته و به تعدادی که اپراتور مشخص می کند به میز برش اتوماتیک انتقال می یابد . سپس اندازه شیشه های مورد نظر توسط نرم افزار بهینه سازی جهت به حداقل رساندن ضایعات توسط دستگاه طراحی و سپس برش داده می شود. شیشه ها پس از جداسازی به خط تولید شیشه دو جداره منتقل می شود ابتدا شیشه ها با آب سختی گیری شده بطور کامل شسته شده و پس از کنترل کیفی به مرحله بعدی منتقل می گردد.

به موازات مراحل مذکور فریم های ما بین دو جدار (Spacer) توسط دستگاه خم کن  (Bending)بر اساس اندازه شیشه خم و برش داده میشود و داخل فریم از مواد رطوبت گیر پر می شود. سپس دو لبه فریم توسط دستگاه بوتیل چسب زده می شود که بمنظور درزگیری و قرار گرفتن اسپیسر مابین دو شیشه و چسبیدن آنها به یکدیگر  می باشد. فریم ها جهت نصب روی شیشه انتقال می یابد  شیشه ها پس از نصب فریم به دستگاه پرس منتقل می شود و همزمان گاز آرگون به صورت اتوماتیک به داخل شیشه دو جداره تزریق می شود سپس توسط روبات محیط شیشه دو جداره با چسب پلی سولفید به منظور درزبندی ثانویه پر می شود.

استاندارد تولید شیشه دو جداره

تولید شیشه دو جداره با توجه به شرایط موجود و نیازهای جامعه طبق استاندارد ملی ایران صورت میگیرد . در تدوین این استاندارد تا حد امکان استانداردهای کشورهای صنعتی پیشرفته و بین المللی لحاظ شده است . از جمله این منابع میتوان به موارد ذیل اشاره نمود :

1- ASTM E546-1988(Reapproved 1999)

2- Standard test method for frost point of sealed insulating glass units ASTM E773-2001

3-Standard test method for accelerated weathering of sealed insulating glass

4- CAN / CGSB 12.8 m.76

5- Insulating glass units

هدف از این استاندارد تعیین روش های آزمون ، شیشه های دو جداره به منظور بررسی و حصول اطمینان از کیفیت آنها می باشد .

جهت انجام آزمایشات نمونه هایی با ابعاد 350×500±5mm در نظر گرفته می شود .

حد اقل تعداد نمونه ها باید 20 عدد از یک محصول باشد .

کلیه نمونه ها باید حداقل به مدت 2 هفته در محیط آزمایشگاهی با دمای °c2±23 به صورت عمودی قرار گرفته باشند
عیت ظاهری آزمونه ها از لحاظ عدم وجود هرگونه خرابی ویا ترک خوردگی بررسی شود .

آزمونهای استاندارد شیشه های دو جداره

1- آزمون تعیین نقطه برفک

2- آزمون پایداری در برابر محیط هایی با رطوبت بالا

3- آزمون چرخه های آب و هوایی تسریع شده

4- آزمون مه گرفتگی

5- آزمون تعیین ضخامت محفظه هوا

6- آزمون تعیین ضخامت قطعه شیشه دوجداره

7- آزمون تعیین ابعاد شیشه دوجداره

افزودنی ها

با افزودن موادی مانند ضربه‌گیرها (Impact Modifiers ) ، کاهش‌دهنده‌های سرعت اشتعال یا متعادل کننده‌های گرما (Heat Stabilizers )، پر کننده‌ها (Fillers )، کمک فرایندها (Processing Aids ) و روان‌کننده‌های داخلی و خارجی (Internal & External Lubricants ) و در صورت نیاز رنگ‌های صنعتی (Pigments ) و اکسیـد تیتانیوم (Tio2 ) به نفت خام و نمک طعام ماده جدیدی بدست می‌آید که هر چند خمیر مایه آن PVC است لیکن خواص فیزیکی متفاوتی داشته و به آن ماده غیر پلاستیک یا UPVC اطلاق می‌شود.

Un plasticized Poly Vinyl Chloride که مختصرا UPVC نامیده می شود ماده‌ای سخت است و در واقع یک نوع پلاستیک حرارت دیده (Thermo plats ) می باشد که در فرایند تولید، از طریق اکسترودر شدن به شکل مقاطع مختلف (Profiles ) در آورده می شود.

طیف وسیعی از محصولات را می توان با UPVC تولید نمود که برای نمونه می توان به پروفیل های قابل مصرف در ساخت درو پنجره، کرکره، کف پوش، سقف کاذب، کابل‌های ایزوله، چرم مصنوعی، ورق PVC ، محافظ قرص، کیسه خون و سرم اشاره کرد.

در ساخت درو پنجره از جنس UPVC از پروفیل های مناسب که دارای غلظت بالای مواد متشکله هستند استفاده می شود تا استحکام کافی را داشته باشند.

UPVC بعلت داشتن امتیازات زیاد و خاص از اواخر دهه 60 وارد بازار شد و جای خود را در بازارهای جهانی پیدا نمود . در حال حاضر UPVC نسبت به سایر مواد پلیمری از امتیازات بالاتری برخوردار بوده ودرصد مصرف بیشتری را به خود اختصاص داده است ( بیش از 60% از سهم بازار).

تاریخچه پیدایش درب و پنجره های UPVC و شیشه دو جداره

ساخت درب و پنجره های UPVC حدوداً درسال 1960 میلادی در اروپا آغاز گردید.با پیشرفت تکنو لوژی و افزایش هزینه تولید درب و پنجره چوبی ‌،آهنی و آلمینیومی استفاده از درب و پنجره های UPVC رونق روز افزون یافته است.سهولت ایجاد تنوع در طرح ورنگ و استقامت فیزیکی و پایداری در برابر شرایط جوی متفاوت وهمچنین قابلیت با ز یافت بودن UPVC به کار رفته در ساخت این نوع درب و پنجره موجب تحولات عمده ای در این صنعت گردیده است .

تاریخچه تولید درب و پنجره های UPVC در ایران

در ایران اولین بار در اواخر دهه 50 واحد تولید پروفیل و ساخت درب وپنجره UPVC حد فاصل شهرستان های بندرانزلی و رشت احداث گردیدو با این که در سال های بعد واحدهای تولیدی دیگری در این زمینه احداث گردیده است.لیکن به دلایل مختلف واحدهای موجود از تکنولوژی کنونی بر خوردار نبوده و حجم عمده پروفیل مصرفی واحدهای مونتاژ از منابع خارجی تامین می گردد.امروزه در کشورهای اروپائی بیش از 75% سهم بازار درب وپنجره متعلق به پنجره های UPVCمی باشد به طوری که به عنوان مثال در سال 1997 حدود 84 میلیون پنجره UPVCدر اروپا فروخته شده است .

ویژگیهای درو پنجره‌های UPVC

1- استحکام
2- زیبایی فوق‌العاده
3- صرفه جوئی در مصرف انرژی تا 40%
4- کاهش آلودگی صوتی تا میزان
5- پائین بودن ضریب انتقال حرارتی
6- حفظ محیط زیست از طریق بازیافت
7- مانع ورود گردو غبار و دود و گازهای موجود از محیط بیرون به داخل
8- مقاوم در برابر شرایط مختلف آب و هوایی
9- مقاوم در مقابل نفوذ اشعه ماوراء بنفش خورشید
10- عدم اشتعال در هنگام آتش سوزی و حریق
11- مقاوم در برابر زنگ زدگی ،خوردگی و رطوبت هوا
12- ایمن در برابر سرقت
13- بی نیاز به صرف هزینه رنگ آمیزی
14- تنوع در طرح و تطابق با هر نوع معماری
15- تنوع در رنگ
16- نظافت راحت و آسان
17- نصب آسان
18- ثبات رنگ در برابر اشعه خورشید
19- مقاوم در برابر عوامل خوردگی – اسیدها و بازها و موارد شیمیایی
20- مقرون به صرفه
21- تنوع در طرح و نوع بازشوها
22- تقویت مضاعف با استفاده از پروفیل گالوانیزه
23- عدم نیاز به سرویسهای مکرر
24- قابلیت استفاده از روکشهای رنگی
25- قابلیت بازیافت

صرفه جوئی در مصرف انرژی
با توجه به اعلام تحقیقات سازمان بهینه سازی مصرف سوخت در ایران در حدود 45% از اتلاف انرژی از طریق پنجره های صورت می گیرد.

 

لوله پلی اتیلن جهت مصارف گازرسانی

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on لوله پلی اتیلن جهت مصارف گازرسانی

لوله پلی اتیلن جهت مصارف گازرسانی

 

لوله و اتصالات پلی اتیلن برای مصارف گازرسانی باعث کاهش هزینه و زمان اجرای پروژه های گازرسانی در سطح کشور شده است.

آغاز استفاده از لوله‌هاي پلاستيکي تحت فشار، از اوايل سال 1950 ميلادي بوده است. از جمله کاربري‌هاي اين لوله‌ها، انتقال آب، مواد شيميايي، سيالات خنک کننده و گرم کننده، گازها، هواي فشرده و سيستم‌هاي آتش نشانی، چه در روي زمين و چه در زير زمين است.يکي از اولين موارد کاربرد پلي اتیلن (با دانسيته متوسط) در زمينه انتقال گاز بوده است كه از سال 1960 ميلادي مورد استفاده قرار گرفته است. در حال حاضر بيش از 90% خطوط انتقال گاز ايالات متحده و کانادا از مواد پلاستیکی است که 99% آن نيز از جنس پلي اتیلن است. لوله های پلي اتیلن در شبکه هاي انتقال گاز نه تنها در آمريکاي شمالي، بلکه در سرتاسر جهان استفاده مي‌شوند.

مزاياي استفاده از لوله های پلي اتیلن گازي :

1- قابلیت اتصال آسان
لوله پلي اتیلن قادر به اتصال جوشي است, به طوري که اتصالات به وجود آمده نه تنها به استحکام خود لوله هستند، بلکه در برخي موارد از خود لوله نيز مستحکم­تر مي­باشند. از آنجاييکه عمده نقطه ضعف خطوط تحت فشار محل اتصالات است، مي‌توان نتيجه گرفت که اتصالات پلي اتیلن در مقايسه با ساير مواد از استحکام مناسب‌تري برخوردارند.

2- قابلیت انعطاف
لوله پلي اتیلن تا حدود 25 برابر قطر لوله قابل خم شدن است. اين مسأله باعث مي‌شود در بسياري از موارد براي تغيير زاويه خط لوله نيازي به استفاده از اتصالات نباشد.از سوي ديگر انعطاف پذيري پلي اتيلن استفاده از آن را در مناطق زلزله خيز توجيه پذيرتر مي‌کند.

3- مزایای نصب
روش‌هاي نصب بي نظيري که به خاطر انعطاف پذيري و اتصالات بدون نشتي لوله های پلي اتیلنی قابل استفاده‌اند، استفاده از اين لوله‌ها را در مقايسه با لوله‌هاي فولادي از نظر اقتصادي و فني توجيه پذير مي‌کند و باعث مي‌شوند مقدار زيادي در هزينه و زمان صرفه جويي شود.

4-  مقاومت در مقابل خوردگي و اثر مواد شيميايي:
لوله پلي اتیلن از مقاومت شيميايي بسيار خوبي برخوردارند و در مقابل ترکيبات فعال گاز و ساير ترکيبات شيميايي بسيار مقاوم مي‌باشند
.

5-  عمر طولاني، دوام و کاهش هزينه ها:
عمر کاري لوله های پلي اتیلن بين 50 تا 100 سال برآورد مي‌شود و اين به معناي کاهش هزينه‌هاي جايگزيني براي طولاني مدت است.از سوي ديگر هزينه كارگزاري ، نصب و نگهداري اين محصول نسبت به ساير محصولات بسيار توجيه پذير و پايين مي‌باشد.

استانداردها و آزمون‌ها

آزمون‌هايي که در کنترل کيفي لوله‌هاي مورد استفاده در انتقال گاز انجام مي شوند، به سه گروه تقسيم مي‌شوند:

1- آزمونهاي بعد از توليد (BRT):به آزمون‌هايي مي گويند که قبل از ترخيص هر دسته از توليدات روي آنها انجام مي شود تا از کيفيت توليد اطمينان حاصل شود.
2- آزمونهاي تأييد فرايند (PVT):به آزمون‌هايي اطلاق مي شود که جهت بررسي کيفيت و پيوستگي خط توليد در فواصل زماني خاص بر روي مواد، اجزا و يا مجموعه انجام مي‌شود.

3- آزمونهاي نوعي (TT):به آزمون‌هايي مي‌گويند که براي اثبات احراز تأييديه‌هاي مورد نظر استاندارد در مورد مواد، اجزا و توانايي مجموعه انجام مي‌شود.

خط تولید لوله های پلی پروپیلن – پلی پروپیلن چیست؟

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on خط تولید لوله های پلی پروپیلن – پلی پروپیلن چیست؟

خط تولید لوله های  پلی  پروپیلن – پلی پروپیلن چیست؟

تاریخچه پلی پروپیلن

پلی پروپیلن بواسطه پلیمریزه شدن پروپیلن بوجود آمده است و در مقایسه با دیگر مواد پلاستیکی جدیدا کشف گردیده است. پلی پروپیلن توسط فونتانا در سال 1950 اختراع شده و با یک ساختار نامنظم با وزن مولکولی زیاد مشخص می گردد. پروپیلن موفقیت زیادی در صنعت داشته و ساخته تک آرایشی پلی پروپیلن می باشد که توسط جیولیو ناتا در سال 1954 اختراع شد. پلی پروپیلن در زمان ترتیب یافتن رادیکالهای متیلی در یک طرف زنجیره ، تک آرایشی می باشد. در سال 1957 ، تولید پلی پروپیلن تحت نام تجاری ” موپلن ” ( MOPLEN ) توسط مونتدیسون آغاز گردید. بعد از آن ، تولید و تجارت آن محصول توسط دیگر شرکت های اروپایی ، آمریکایی و ژاپنی شروع شد.

پلی پروپیلن چیست ؟

پلی پروپیلن ( PP ) یکی از چندین مشتقات پروپیلن ( CH3-CH=CH2 ) است. پلیمرها ، بسته به نوع پلیمریزه شدن و کاتالیزور مورد استفاده ، ترکیبی منظم و یا نامنظم را از خود نشان می دهند. وقتی اتمهای پلیمرها ترکیب منظمی مثل پلی پروپیلن تک آرایشی داشته باشند ، پلیمرها براحتی به کریستال ( بلور ) تبدیل می گردند. زمانیکه ترتیب نداشته باشند به کریستال تبدیل نمی شوند. در واقع ،پروپیلن، بسته به ترتیب مولکولهای بزرگ خود ، انواع مختلف با کاربردهای گوناگون دارند. ویژگیهای آنها تحت تاثیر ساختار آنها بر زنجیره مولکولی و وزن مولکولی آنها می باشند. پلیمرهای ساختار منظم ( PP تک آرایشی و هم آرایشی ) می توانند کریستالی شده ، در دماهای بالا ذوب نشده و ویژگیهای مکانیکی خوبی از خود نشان دهند. به عبارت دیگر ،پلی پروپیلن های بی آرایش ( ترکیب نامنظم اتم ها ) کریستالی نشده و خصوصیات ارتجاعی دارند که دارای مصارف عملی نمی باشند. در مصارف صنعتی ، فقط پلیمرهای تک آرایشی استفاده می شوند و دیگر گونه ها برای مصرف تجاری تولید نمی گردند.پلی پروپیلن یک پلاستیک قابل انعطاف بوده که براحتی شکل گرفته و می تواند قالب ریزی شود. نام پلاستیک گرمایی برای آن بدلیل شکل گیری و قالب ریزی راحت آن بر اثر حرارت می باشد. پلی پروپیلن با حرارت به پلاستیک تبدیل شده ، و وقتی سرد شود ، جامد می گردد. این خصوصیت آن ، امکان تولید ذرات از طریق تزریق ، روزن رانی و شکل گیری خلائی را برای آن میسر می سازد.

سه نوع پلی پروپیلن :

هوموپلیمر :

این ماده با پلیمریزه شدن پلی پروپیلن بدست می آید.

بلوک (دسته ای ) کوپلیمر :

این ماده از پلیمریزه شدن مقادیر خاص پروپیلن و اتیلن بدست می آید. بدلیل قرارگیری در حالتی میان مولکولهای پروپیلن و اتیلن در زنجیره پلیمری بصورت دسته ای، این ماده دارای ویژگی میان پلی اتیلن و پلی پروپیلن می باشد.

رندوم (بی نظم )کوپلیمر :

این ماده از پلیمریزه شدن مقادیر خاص پروپیلن و اتیلن بدست آمده و مولکولها بی نظم و ترتیب شکل می گیرند .

اکسترودر -خط تولید لوله های پلی اتیلن – پلی اتیلن چیست ؟

Posted by roueen in اکستروژن پلاستیک on June 18, 2015 with Comments Off on اکسترودر -خط تولید لوله های پلی اتیلن – پلی اتیلن چیست ؟

اکسترودر – خط تولید لوله های پلی اتیلن – پلی اتیلن چیست ؟

پلی اتیلن چیست؟

پلی اتیلن یا پلی اتن یکی از ساده‌ترین و ارزانترین پلیمرها است. پلی اتیلن جامدی مومی و غیر فعال است. این ماده از پلیمریزاسیون اتیلن بدست می‌آید و بطور خلاصه بصورت PE نشان داده می‌شود. مولکول اتیلن دارای یک بند دو گانه C=C است. در فرایند پلیمریزاسیون بند دو گانه هر یک از مونومرها شکسته شده و بجای آن پیوند ساده‌ای بین اتم‌های کربن مونومرها ایجاد می‌شود و محصول ایجاد شده یک درشت‌مولکول است.

تاریخچه تولید پلی اتیلن

پلی اتیلن اولین بار بطور اتفاقی توسط شیمیدان آلمانی “Hans Von Pechmanv” سنتز شد. او در سال 1898 هنگام حرارت دادن دی آزومتان ، ترکیب مومی شکل سفیدی را سنتز کرد که بعدها پلی اتیلن نام گرفت. اولین روش سنتز صنعتی پلی اتیلن بطور تصادفی توسط “ازیک ناوست” و “رینولرگیسون” ( از شیمیدان‌های ICI ) در 1933 کشف شد. این دو دانشمند با حرارت دادن مخلوط اتیلن و بنزالدئید در فشار بالا ، ماده‌ای موم‌مانند بدست آوردند.علت این واکنش وجود ناخالصی‌های اکسیژن‌دار در دستگاه‌های مورد استفاده بود که بعنوان ماده آغازگر پلیمریزاسیون عمل کرده بود. در سال 1935 “مایکل پرین” یکی دیگر از دانشمندهای ICI این روش را توسعه داد و تحت فشار بالا پلی اتیلن را سنتز کرد که این روش اساسی برای تولید صنعتی LDPE در سال 1939 شد.

استفاده از انواع کاتالیزورها در سنتز پلی‌اتیلن

اتفاق مهم در سنتز پلی اتیلن ، کشف چندین کاتالیزور جدید بود که پلیمریزاسیون اتیلن را در دما و فشار ملایم‌تری نسبت به روش‌های دیگر امکان‌پذیر می‌کرد. اولین کاتالیزور کشف شده در این زمینه تری اکسید کروم بود که در 1951 ، “روبرت بانکس” و “جان هوسن” در شرکت فیلیپس تپرولیوم آنرا کشف کردند. در 1953 ، “کارل زیگلر” شیمیدان آلمانی سیستم‌های کاتالیزور شامل هالیدهای تیتان و ترکیبات آلی آلومینیوم‌دار را توسعه داد.این کاتالیزورها در شرایط ملایم‌تری نسبت به کاتالیزورهای فیلیپس قابل استفاده بودند و همچنین پلی اتیلن یک آرایش (با ساختار منظم) تولید می‌کردند. سومین نوع سیستم کاتالیزوری استفاده از ترکیبات متالوسن بود که در سال 1976 در آلمان توسط “والتر کامینیکی” و “هانس ژوژسین” تولید شد. کاتالیزورهای زیگلر و متالوسن از لحاظ کارکرد بسیار انعطاف‌پذیر هستند و در فرایند کوپلیمریزاسیون اتیلن با سایر اولفین‌ها که اساس تولید پلیمرهای مهمی مثل VLDPE و LLDPE و MDPE هستند، مورد استفاده قرار می‌گیرند.اخیرا کاتالیزوری از خانواده متالوین‌ها با قابلیت استفاده بالا برای پلیمریزاسیون پلی اتیلن به نام زیرکونوسن دی کلرید ساخته شده است که امکان تولید پلیمر با ساختار بلوری (تک آرایش) بالا را می‌دهد. همچنین نوع دیگری از کاتالیزورها به نام کمپلکس ایمینوفتالات با فلزات گروه ششم مورد توجه قرار گرفته است که کارکرد بالاتری نسبت به متالوسن‌ها نشان می‌دهند.

انواع پلی اتیلن

طبقه‌بندی پلی اتیلن ها بر اساس دانسیته آنها صورت می‌گیرد که در مقدار دانسیته اندازه زنجیر پلیمری و نوع و تعداد شاخه‌های موجود در زنجیر دخالت دارد.

HDPE(پلی‌اتیلن با دانسیته بالا)

این پلی اتیلن دارای زنجیر پلیمری بدون شاخه است بنابراین نیروی بین مولکولی در زنجیرها بالا و استحکام کششی آن بیشتر از بقیه پلی اتیلن‌ها است. شرایط واکنش و نوع کاتالیزور مورد استفاده در تولید پلی اتیلن HDPE موثر است. برای تولید پلی اتیلن بدون شاخه معمولا از روش پلیمریزاسیون با کاتالیزور زیگلر- ناتا استفاده می‌شود.

LDPE(پلی‌اتیلن با دانسیته پایین)

این پلی اتیلن دارای زنجیری شاخه‌دار است بنابراین زنجیرهای LDPE نمی‌توانند بخوبی با یکدیگر پیوند برقرار کنند و دارای نیروی بین مولکولی ضعیف و استحکام کششی کمتری است. این نوع پلی اتیلن معمولا با روش پلیمریزاسیون رادیکالی تولید می‌شود. از خصوصیات این پلیمر ، انعطاف‌پذیری و امکان تجزیه بوسیله میکروارگانیسمها است.

LLDPE(پلی اتیلن خطی با دانسیته پایین)

این پلی اتیلن یک پلیمر خطی با تعدادی شاخه‌های کوتاه است و معمولا از کوپلیمریزاسیون اتیلن با آلکن‌های بلند زنجیر ایجاد می‌شود.
MDPE پلی اتیلن با دانسیته متوسط است

 کاربرد

در تولید لوله‌های پلاستیکی و اتصالات لوله‌کشی معمولا از MDPE استفاده می‌کنند. LLDPE بدلیل بالا بودن میزان انعطاف‌پذیری در تهیه انواع وسایل پلاستیکی انعطاف‌پذیر مانند لوله‌هایی با قابلیت خم شدن کاربرد دارد. اخیرا پژوهش‌های فراوانی در تولید پلی اتیلنهایی با زنجیر بلند و دارای شاخه‌های کوتاه انجام شده است. این پلی اتیلن ها در اصل HDPE با تعدادی شاخه‌های جانبی هستند. اینپلی اتیلن ها ترکیبی ، استحکام HDPE و انعطاف‌پذیری LDPE را دارند.

پلی اتیلن چیست؟ تاریخچه پلی اتیلن – انواع پلی اتیلن و مزایای آنها

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on پلی اتیلن چیست؟ تاریخچه پلی اتیلن – انواع پلی اتیلن و مزایای آنها

پلی اتیلن چیست؟ تاریخچه پلی اتیلن، انواع پلی اتیلن و مزایای آنها

پلی اتیلن یا پلی اتن یکی از ساده‌ترین و ارزانترین پلیمرها است.
پلی اتیلن جامدی مومی و غیر فعال است. این ماده از پلیمریزاسیون اتیلن بدست می‌آید و بطور خلاصه بصورت PE نشان داده می‌شود.
مولکول اتیلن ( C2H4 ) دارای یک بند دو گانه C=C است. در فرایند پلیمریزاسیون باند دو گانه هر یک از مونومرها شکسته شده و بجای آن پیوند ساده‌ای بین اتم‌های کربن مونومرها ایجاد می‌شود و محصول ایجاد شده یک درشت‌مولکول است.

تاریخچه تولید پلی اتیلن
پلی اتیلن اولین بار بطور اتفاقی توسط شیمیدان آلمانی “Hans Von Pechmanv” سنتز شد. او در سال 1898 هنگام حرارت دادن دی آزومتان ، ترکیب مومی شکل سفیدی را سنتز کرد که بعدها پلی اتیلن نام گرفت.
اولین روش سنتز صنعتی پلی اتیلن بطور تصادفی توسط “ازیک ناوست” و “رینولرگیسون” ( از شیمیدان‌های ICI ) در 1933 کشف شد. این دو دانشمند با حرارت دادن مخلوط اتیلن و بنزالدئید در فشار بالا ، ماده‌ای موم‌مانند بدست آوردند. علت این واکنش وجود ناخالصی‌های اکسیژن‌دار در دستگاه‌های مورد استفاده بود که بعنوان ماده آغازگر پلیمریزاسیون عمل کرده بود. در سال 1935 “مایکل پرین” یکی دیگر از دانشمندهای ICI این روش را توسعه داد و تحت فشار بالا پلی اتیلن را سنتز کرد که این روش اساسی برای تولید صنعتی LDPE در سال 1939 شد.

استفاده از انواع کاتالیزورها در سنتز پلی اتیلن
اتفاق مهم در سنتز پلی اتیلن، کشف چندین کاتالیزور جدید بود که پلیمریزاسیون اتیلن را در دما و فشار ملایم‌تری نسبت به روش‌های دیگر امکان‌پذیر می‌کرد.
اولین کاتالیزور کشف شده در این زمینه تری اکسید کروم بود که در 1951 ، “روبرت بانکس” و “جان هوسن” در شرکت فیلیپس تپرولیوم آنرا کشف کردند. در 1953، “کارل زیگلر” شیمیدان آلمانی سیستم‌های کاتالیزور شامل هالیدهای تیتان و ترکیبات آلی آلومینیوم‌دار را توسعه داد. این کاتالیزورها در شرایط ملایم‌تری نسبت به کاتالیزورهای فیلیپس قابل استفاده بودند و همچنین پلی اتیلن یک آرایش (با ساختار منظم) تولید می‌کردند. سومین نوع سیستم کاتالیزوری استفاده از ترکیبات متالوسن بود که در سال 1976 در آلمان توسط “والتر کامینیکی” و “هانس ژوژسین” تولید شد.
کاتالیزورهای زیگلر و متالوسن از لحاظ کارکرد بسیار انعطاف‌پذیر هستند و در فرایند کوپلیمریزاسیون اتیلن با سایر اولفین‌ها که اساس تولید پلیمر های مهمی مثل VLDPE و LLDPE و MDPE هستند، مورد استفاده قرار می‌گیرند.
اخیرا کاتالیزوری از خانواده متالوین‌ها با قابلیت استفاده بالا برای پلیمریزاسیون پلی اتیلن به نام زیرکونوسن دی کلرید ساخته شده است که امکان تولید پلیمر با ساختار بلوری (تک آرایش) بالا را می‌دهد. همچنین نوع دیگری از کاتالیزورها به نام کمپلکس ایمینوفتالات با فلزات گروه ششم مورد توجه قرار گرفته است که کارکرد بالاتری نسبت به متالوسن‌ها نشان می‌دهند.

تاریخچه پلی اتیلن
كلمه پليمر از كلمه يونانى( پلى ) به معناى چند و ( مر ) به معناى واحد و يا قسمت بوجود آمده است . پلیمرها را اشتباها رزين ، الاستومر و پلاستيك نيز مى‌نامند.
در حالى كه پلاستيك تنها يك صفت است كه براى مواردى به كار مى رود كه قابليت تغيير شكل بر اثر فشار را دارا هستند و اغلب اشتباها به عنوان يك كلمه اصلى براى صنایع پلاستیک و توليدات آن به كار مى رود.
اولين بار كلمه پليمر توسط شيمى دانى به نام رنالت در سال 1835، به كار رفت و اولين كاربرد تجارى مواد پليمرى در سال 1834 با كشف كائوچو آغاز شد.
لكن اولين پلاستيك مصنوعى با نام نيترات سلولز در سال 1862 كشف و در سال 1868 وارد بازار شد.
نايلون در سال 1938، پلی اتیلن در سال 1942، پلی پروپیلن در سال 1957،پلى بوتيلن درسال 1974و پليمرهاى كريستال مايع براى ساخت اجزاى الكترونيكى در سال 1985رايج گرديدند.
پليمرها به سه نوع پلیمرهاى طبيعى ، طبيعى اصلاح شده و مصنوعى تقسيم مى شوند.
اولين پلاستيكهاى صنعتى مدرن حدود 100سال پيش رواج يافتند ولى در دهه هاى اخير رشد فزاينده و گوناگونى در صنايع به وقوع پيوست .
حدود 60پليمر بسيار مهم تاكنون به بازار عرضه شده كه مشتقات آنها به بيش از 2000مورد مى رسد و كماكان در حال افزايش است. پلى اولفينها پلیمرهاى گرما نرم با خواص تقريبا مشابه و فرمولاسيون نزديك به هم هستند كه انواع معروف آنها پلی اتیلن ها، پلی پروپیلن ها و پلى بوتيلن ها مى باشند كه در صنايع لوله،كاربرد فراوانترى دارند.

بررسی انواع مختلف پلی اتیلن ها و مزایای هر یک نسبت به دیگری
با يك نگاه به جدول زير متوجه میشويد از نظر انبساط، مقاومت در برابر حلالها، مقاومت كششى، مقاومت فشردگى، و مقاومت حرارتى و نفوذ پذيرى گازى پپلی پروپیلنها امتياز بيشترى نسبت به پلی اتیلنها داشته و به علت مقاومت حرارتى و مقاومت كششى پلى پروپيلنها از پلى بوتيلنها بهتر هستند. اين موارد از جمله مهمترين مواردى هستند كه در صنعت لوله كشى آب سرد گرم مورد نظر مى باشند و باعث امتياز پلى پروپيلن ها مى شوند. البته در اين ميان لوله هاى با تركيب پليمر و آلمينيوم نيز توليد شدند كه به دليل گرانى و اتلاف حرارتى و … به علت وجود فلز در آنها زياد مورد استقبال قرار نگرفت.

پلی پروپیلن ها پلى بوتلين ها پلی اتیلن ها ازنظر
مقاومت شيميايى
بسيارخوب
مقاومت شيميايى
بسيار خوب
مقاومت شيميايى
بسيار خوب
شيميايى
ارزان بدون فن آورى
تا حدى گران با فن آورى
تا حدى گران قيمت ارزان و موجود بودن در
انواع قابل مصرف
هزينه
26 حد اكثر ———————— 50 حد اكثر انبساط حرارتى
مورد حمله مورد حمله مورد حمله اسيدهاى اكسيد كننده
مي شكند لكن تثبيت مي گردد خرد مي شود تثبیت کننده دارد اثر نور خورشيد و اشعه ماوراى بنفش
آرام سريعاً ميسوزد آرام سرعت اشتعال
مقاوم تا
80 درجه سانتيگراد
مقاوم مقاوم تا
60 درجه سانتيگراد
در برابر حلالها
مقاوم مقاوم مقاوم در برابر بازها
31-62 26-30 4-38 مقاومت كششى
38-55 ————————– 19-25 مقاومت فشردگى
0/025-0/25 نمي شكند ( كاملاً ارتجاعى ) 25-1
مانند شلنگ نمي شكند
ضربه پذيرى ايزود
85-110    راك ول 55-65   شر 41-70   راك ول سختى
قابل استفاده در لوله كشى گاز ————————– غير قابل استفاده در خلاء نفوذ پذيرى گازى
110-160 کمتر از 110 80-120 مقاومت حرارتى  (درجه سانتيگراد)

الياف پلي پروپيلن چيست و چگونه توليد مي شود

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on الياف پلي پروپيلن چيست و چگونه توليد مي شود

الياف پلي پروپيلن که از طريق پليمريزاسيون پروپيلن به صورت يک پليمر خطي تهيه مي گردند و به اختصار پ-پ ناميده مي شوند بعد از پيدا شدن کاتاليست زيگلرناتا توليد شدند اين کاتا ليست توليد پلي پروپيلن ايزو تاکتيک که قادر به متبلور شدن مي باشد را امکان پذير ساخت .

اين الياف در سال 1960در ايتاليا با نام تجاري مراکلون به صورت صنعتي توليد شده وبه بازار عرضه گرديدند . خصوصيات پروپيلن باعث رشد سريع آن در سطح بين المللي گرديد وبعد از مدتي نسبتاً کوتاه ،پلي پروپيلن توانست از نظر مقدار توليد ، چهارمين مقام را بعد از پلي استر ، نايلون وآکريليک کسب نمايد .
عدم امکان رنگررزي الياف  پروپيلن به روشهاي متداول براي ديگر الياف ، باعث جلو گيري از رشد بيشتر اين ليف مصنوعي گرديده است.

الياف و نخ هاي نواري که دو کاربرد پلي پروپيلن را تشکيل مي دهند نسبتاً به آساني به روش ذوب ريسي تهيه مي گردند و آسان بودن توليد اين نوع الياف و پائين بودن هزينه توليد استقبال بسيار گستردهاي از آن را به همراه داشته است . با بکار گيري مواد بالا برنده مقاومت در مقابل اشعه ماوراء بنفش سعي شده است عيب کم بودن مقاومت پلي پروپيلن در مقابل اين اشعه مرتفع گردد.

پلي پروپيلنداراي دماي ذوب بالا تر (175-165درجه سانتيگراد)در مقايسه با پلي اتیلن مي باشد . از نقطه نظر استحکام ومقاومت در مقابل سايش ،پلي پروپيلن با پلي اتیلن تفاوت زياد ندارد .
همانطور که گفته شد پلي پروپيلن هم مثل پلي اتیلن با روش هاي معمول قابل رنگرزي نبوده و به روش رنگرز ي توده که در آن قبل از تشکيل الياف ، به پليمر مذاب اضافه مي شود رنگرزي مي گردد.
لازم به ذکراست که الياف الفيني اصلاح شده به روش شيميايي که قادر به رنگرزي شدن با روشهاي معمولي مي باشند توليد شده اند .

به عنوان مثال پلي پروپيلن حاوي پلي ونيل پيريدين به صورت پخش شده ويا ونيل پيريدين که جزئي ماکرو مولکول را تشکيل مي دهد با رنگينه هاي اسيدي قابل رنگرزي است و به هر حال قيمت تمام شده اين نوع الياف باعث گرديده است که از رنگرزي توده به عنوان مهم ترين روش براي رنگرزي اين نوع الياف استفاده گردد.

توليد الياف پلي پروپيلن
ماده اوليه توليد الياف پلي پروپيلن را پروپيلن(3CH2=CHCH)تشکيل مي دهد که به صورت يک توليد جانبي در توليد اتيلن به روش شکستن مولکول نفت درصنعت پتروشيمي شکل مي گيرد .گازهاي مابع حاوي پروپيلن ، ديگر ماده اين منبع را تشکيل مي دهند .

پلي پروپيلن از پليمريزاسيون پروپيلن در شرايط دما و فشار نسبتاً ملايم ودر حضور کاتاليست معروف زيگلر – ناتا انجام مي شود . وجود اين کاتاليست ، پليمري به صورت ايزوتاکتيک را تشکيل مي دهد که قادر به متبلور شدن تا حدود 90 درصد مي باشد .
ديگر فرمهاي آتاکتيک وسيندو تاکتيک پلي پروپيلن دارا ي خواص مناسب جهت تشکيل الياف نمي باشند . با توجه به شرايط سرد شدن ، ساختار بلورين پلي پروپيلن دو شکل متفاوت پيدا ميکند . چنانچه پلي پروپيلن مذاب سريعاً سرد گردد ، ساختار بلورين پايدار که پاراکريستالين و ياسمکتيک نام دارد شکل مي گيرد .
چنانچه پلي پروپيلن مذاب به آرامي سرد گردد . ساختار بلورين معروف به منوکلينيک بوجود مي آيد.حرارت دادن پلي پروپيلن ازنوع پاراکريستالين به بيش از 80 درجه سانتيگراد باعث تغيير ساختار بلورين آن به شگل منوکلينيک مي گردد

در الياف پلي الفيني ،پيوندهاي شيميايي ويوني بين ماکرو مولکول هاي پلي پروپيلن وجود نداشته ونيرو هاي بين زنجيره اي به نيرو هاي واندروالس محدودمي گردند . ازاين رو براي کسب خواص فيزيکي مناسب با وزن مولکولي الياف پلي الفيني در مقايسه با الياف ديگر بالاتر انتخاب گردد.

با توجه به سرعت توليد و دماي پليمر مذاب ، سرعت سرد شدن وکشش بعد از توليد ، الياف پلي پروپيلن ازنظر جهت گيري بلورهاي خود نسبت به محور ليف با يکديگر تفاوت دارند و افزايش سرعت ريسندگي اوليه واعمال کشش بعد از توليد ، جهت گيري بلورها رادر جهت محور ليف افزايش مي دهد.

پليمريزاسيون پروپيلن به سه روش امکان پذير مي باشد . در روش تعليق که يک روش کلاسيک بحساب مي آيد پروپيلن در يک محيط رقيق کننده که معمولاً يک هيدرو کربن آليفاتيک مي باشد پليمريزه مي گردد مکمل اين روش ، پليمريزاسيون فاز گاز مي باشند.

شدر ذوب ريسي پلي پروپيلن ، مشابه ديگر الياف ترموپلاستيک مثل پلي استر وپلي اميد ، وزن مولکولي متوسط ، توزيع وزن مولکولي و همچنين شاخص جريان توده پليمري مذاب (MFI) وخصوصيات الياف توليد شده را تحت تأثير خود قرار مي دهند . بطور کلي افزايش وزن مولکولي پليمر ، افزايش استحکام الياف توليد شده را به همراه دارد.

براي الياف پلي پروپيلن که به منظور مصرف در صنعت نساجي توليد مي گردندوزن مولکولي متوسط و براي الياف پلي پروپيلن با استحکام زياد که به عنوان الياف با کارايي بالا توليد مي کردند وزن مولکولي بالا انتخاب مي گردد .
باتوجه به مربوط بودن شاخص جريان مذاب و وزن مولکولي متوسط به يکديگر ، شاخص جريان مذاب مناسب درتوليد الياف نساجي 25-15 گرم بر10 دقيقه وبراي الياف باکارايي بالا 5-3 گرم بر10 دقيقه ذکرشده است

آزمايشات نشان داده است که محدوده کوچکتر توزيع وزن مولکولي پليمر ، به قابليت ريسندگي اوليه بهتر ، کمک مي نمايد . باتوجه به بالابودن وزن مولکولي پلي پروپيلن که افزايش ويسکوزيته توده مذاب در ريسندگي اوليه آنرا به همراه دارد ، دماي پلي پروپيلن مذاب درريسندگي اوليه آنها70 تا120درجه بيش از دماي پليمربوده ودرمحدوده 230 تا 280 درجه سانتيگراد انتخاب مي گردد . شکل زير ذوب ريسي رابه صورت شماتيک نشان مي دهد

دراين روش پليمربه صورت گرانول از تغذيه کننده (هاپر) وارد مارپيچي ذوب کننده شده بر اثر گرمايش توسط مارپيچي ذوب مي گردد
. پليمر مذاب سپس به کمک پمپ تغذيه از طريق ***** به رشته ساز تغذيه شده وپس از خروج از روزنه هاي رشته ساز تحت تاثير نيروي کششي قرار مي گيرد و با از دست دادن گرما به محيط خود جامد گرديده وسر انجام روي بسته اي پيچيده شده ويا آنکه به صورت مداوم به بخشي ديگر از خط توليد نهايي تغذيه مي گردد .
از آنجايي که پلي پروپيلن داراي گرماي ويژه بالا (KJ/Kg-K2-6/1) وضريب هدايتي کم (J/m.s.k3/0-1/0) مي باشد ، لذا طول منطقه سرد کننده بعد از رشته ساز در مقايسه با اليافي مثل نايلون ويا پلي استر ، بايد طويل تر انتخاب گردد . به همين ترتيب سرعت هاي توليد بالاتر به منطقه سرد کننده طويل تري احتياج دارند . از اين رو ، طول ستون ريسندگي ممکن است به 10متر برسد .

با توجه به پائين بودن دماي ترانزيسيون ثانويه الياف الفيني از دماي اطاق ، تبلور الياف نه تنها در سرد شدن در ستون ريسندگي اوليه شکل مي گيرد بلکه اين فرآيند ممکن است بعداً هم روي بوبين ادامه پيدا مي کند بنابراين شرايط انجماد در ستون ريسندگي و همچنين شرايط نگهداري بوبين پس از توليد ، تبلور الياف الفيني را تحت تأثير خود قرار مي دهند تعداد روزنه هاي رشته سازهاي توليد کننده نخهاي فيلامنتي ممکن است با توجه فيلامنت هاي مورد احتياج بين 150- 10 متغير ميباشد رشته سازهايي که براي توليد الياف به منظور بريده شدن و مورد استفاده قرار گرفتن به صورت کوتاه ( استيپل) به کار گرفته ميشوند ممکن است تا 20000 روزنه داشته باشند

با توجه به سرعت توليد ، الياف توليد شده ممکن است تا 6 برابر طول اوليه خود کشيده شوند تا خواص مکانيکي مطلوب را بدست آورند . درجه کشش قابل کسب براي پلي پروپيلن پاراکريستالين بيشتر از پلي پروپيلن منو کلينيک مي باشد واين تفارت به مکانيک تغيير شکل مختلف براي ساختار منو کلينيک پاراکريستالين ربط داده شده است .
پديده هاي فيزيکي مهم در ذوب ريسي را مي توان به صورت زير خلاصه نمود:
-رفتار توده مذاب از نقطه نظر رئولوژي
-کاهش قطر جريان در روزنه رشته ساز
-سرمايش جريان
-تبلور وتشکيل ساختار ليف

با اعمال کشش به الياف بعد از ريسندگي اوليه ، نظم داخلي آنها افزايش يافته وتبلور بيشتري شکل مي گيرد . با توجه به دماي تبديل شيشه اي پائين اين نوع الياف ، کشش آنها با سرعت کم به مقدار 3تا8 برابر بدون گرمايش امکان پذير است.
کشش الياف بدون گرمايش به کشش سرد معروف است.براي افزايش سرعت کشش ،الياف پلي پروپيلن حرارت داده مي شوند .کشش همراه با گرمايش به کشش گرم معروف است.ساختار جديد بعد از کشش ، معمولاً با سرد نمودن الياف پايدار مي گردد.
الياف پلي پروپيلن با توجه به قيمت ارزانتر انها نسبت به الياف ديگر براي طيف گسترده اي از کاربرد ها مورد استفاده قرار گرفته اند .به عنوان مثال ،نخ کفپوش هاي از نوع تافتينگ،نخ خامه قالي ، الياف کفپوشهاي نمدي ،کاربردهاي نساحي الياف پلي پروپيلن را تشکيل مي دهند.کاربردهاي صنعتي پلي پروپيلن را طناب، منسوجات کشاورزي و***** ، منسوجات عمراني (کاربرد در عمران)گوني ،توري وموارد ديگري تشکيل مي دهند . براي کاربردهاي صنعتي هم از الياف پلي اتیلن استفاده مي شود

سبک بودن پلي اتیلن و پلي پروپيلن از آب وهمچنين عدم جذب آب توسط اين الياف ودر نتيحه عدم تغيير در خواص مکانيکي انها بر اثر تماس با رطوبت از خصوصيات بارز اين دو نوع ليف در مقايسه با الياف ديگر است.
الياف الفيني علاوه بر داشتن نهايت خاصيت آبگريزي ،در مقابل تعداد زيادي از اسيدهاي غير آلي ، بازها وحلال هاي آلي در دماي اطاق مقاوم باشند . اين خواص تا حدودي به وزن مولکولي بسيار بالاي اين الياف مربوط مي گردد. سولفوريک ونيتريک اسيد وهمچنين ديگر اسيدهاي قوي در دماهاي بالا قادر به تخريب پلي الفين ها مي باشند.پلي پروپيلن معمولي که به بازار عرضه مي گردد داراي مقدار زيادي مواد افزودني مي باشد .نمونه هايي از اين مواد که به منظور امکان پذير ساختن تولید پلي پروپيلن به ان اضافه مي گردند به قرار زير است :
ضد اسيد
مواد ضد اسيد مثل کلسيم ويا سديم استئارت نقش خنثي سازي بقاياي کاتاليست مورد استفاده قرار گرفته در مرحله پليمريزاسيون را به عهده دارند.در غير اينصورت امکان تشکيل اسيد وجود دارد که مي تواند مشکلاتي مثل اثر سوء بر دستگاههاي تبديل را به همراه داشته باشد.
ضد اکسيداسيون
مواد ضد اکسيداسيون به عنوان محافظت از پليمر در مقابل شکسته شدن ماکرومولکول در حين توليد و بعد از آن مورد استفاده قرار مي گيرند.فنل با ممانعت فضايي نمونه اي از مواد ضد دي اکسيداسيون (آنتي اکسيدان )مي باشد . لازم به ذکر است که عليرغم به همراه داشتن اين مواد افزودني ،پلي پروپيلن به عنوان اصلاح شده در نظر گرفته نمي شود.

عليرغم مزاياي چشمگير ، الياف پلي پروپيلن داراي سه مشکل عمده در رابطه با کاربرد خود بصورت زير مي باشند :
الف : دماي ذوب نسبتاً پائين:
تفاوت زياد بين دماي ذوب الياف پلي پروپيلن و ديگر الياف مثل پلي استر و پلي آميد ، کاربرد وسيعتر پلي پروپيلن را محدود ساخته است .
ب : تخريب بر اثر اکسيداسيون
وجود پيوند C-H نوع سوم د رپلي پروپيلن تخريب آنرا بر اثر اکسيداسيون شدت مي بخشد . گرما ونور به عنوان يک کاتاليست براي واکنش اکسيداسيون عمل مي نمايد . از اين رو ، مقاومت کم الياف پلي پروپيلن معمولي در مقابل نور و گرما ، عيب بزرگي براي آنها بشمار مي آيد . جذب اکسيژن توسط اين پليمر ، باعث شکستن ماکرومولکول و در نتيجه کاهش درجه پليمريزاسيون بر اثر تشکيل هيدروپراکسيدها در دماي بالا مي باشد . به همين علت ، در پليمريزاسيون آن از مواد ضد اکسيد کننده استفاده مي شود.
از نقطه نظر تخريب بر اثر گرما ، پلي پروپيلن به علت دارا بودن کربن نوع سوم در معرض خطر بيشتر نسبت به پلي اتيلن قرار دارد . نور خورشيد هم از طريق مکانيزم فتواکسيداسيون با اثري مشابه گرما باعث تخريب پلي الفين ها مي گردد . بخش ماوراي بنفش نور خورشيد نقش عمده اي در تخريب به عهده دارد . الياف ظريف سريعتر از الياف ضخيم تحت تأثير نور خورشيد قرار مي گيرند .

ج : عدم امکان رنگرزي با روشها متداول براي ديگر الياف
همان طور که قبلاً گفته شد با توجه با عدم وجود گروههاي قطبي در پلي پروپيلن ، اين ليف بدون اصلاح شدن قادر به قبول تعداد زيادي از رنگينه هاي مختلف نبوده و رنگرزي نوع معمولي آن امروزه به کمک رنگرزي توده انجام مي شود .
براي کاهش کمبودهاي پلي پروپيلن سعي شده است که اين نوع ليف ترموپلاستيک با توجه به هدف خاص اصلاح گردد . اين اصلاح ممکن است که خواص ديگري را نيز تحت تأثير خود قرار دهد . اصلاحات براي بهبود و حتي کسب خصوصيات ديگر ممکن است از طريق اصلاح شيميايي پليمر و يا اصلاح فيزيکي در مرحله توليد و يا بعد از آن انجام شود.

 
Tags:

لوله های پلیمری – انواع لوله های پلیمری

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on لوله های پلیمری – انواع لوله های پلیمری

لوله های پلیمری را میتوان از نظر نوع پلیمر بکار رفته در آن به صورت زیر فهرست نمود :

1.   لوله پلی اتیلن سنگین ( سخت ) تک لایه

2.   لوله پلی اتیلن سنگین ( سخت ) کاروگیت

3.   لوله پلی اتیلن سبک ( نرم )

4.   لوله پلی اتیلن شبکه ای

5.   لوله های تلفیقی

6.   لوله پلی پروپیلن

7.   لوله پی وی سی

8.   لوله پلی بوتیلن

9.   لوله ABS

10. لوله های تقویت شده با الیاف

11. سایر لوله ها ی پلیمری با شرایط خا ص

1- لوله های پلی اتیلن سنگین ( سخت ) تک لایه جزء پر مصرفترین لوله ها در انتقال آب و سایر سیالات بوده و دارای کاربردهای زیر میباشد :

•شبکه های زهکشی
•شبکه های آبرسانی شهری

•شبکه های فاضلاب شهری و روستایی
•شبکه های آب روستایی

•سیستمهای مایعات و فاضلاب صنعتی
•شبکه های آبیاری تحت فشار اعم از قطره ای و بارانی
•شبکه های گاز رسانی شهری
•شبکه زهکشی ساختمانها
•پوشش کابلها ی مخابراتی و فیبر نوری
•سیستم مخصوص مایعات بسیار ساینده
•سیستم آبیاری متحرک
•شبکه های آب آشامیدنی

……..

2- لوله های پلی اتیلن سنگین ( سخت ) دو جداره نیز جزء پر مصرفترین لوله ها در انتقال آب و سایر سیالات بوده و دارای کاربردهای زیر میباشد :

·         انتقال فاضلاب شهری ، روستایی و صنعتی

·         بعنوان جدار داخلی لوله های بتنی

·         انتقال هوا

·         انتقال ثقلی آب ، سیالات صنعتی

·         نمک زدایی  و زهکشی و جمع آوری آب های سطحی در شهر ها و مناطق صنعتی

·         جهت انتقال آب از زیر جاده ، پل و……

·         پل جاده های اصلی و فرعی و راه آهن

·         آب نما

·         سیلوی مواد و مایعات

·         ارتباط بین ساختمان ها

·         کانال تاسیسات در کارخانجات

·         قالب دائم پل هایی که ستون های دایره شکل دارند

·         آدم رو

·         ستون های تبلیغاتی موقت در شهرها

·         استفاده در پارک ها و منازل به عنوان گلدان

·         مخزن تصفیه بی هوازی فاضلاب

·         مقسم آب

·         سیفون انتقال آب زیر جاده ها و رودخانه ها و مسیل ها

·

3- لوله های پلی اتیلن سبک ( نرم )

•آبیاری قطره ای

•هیدرو فلوم

•آبیاری نواری

4- لوله پلی اتیلن شبکه ای

•سیستم گرمایش کف

•ذوب برفها

5- لوله های تلفیقی

•سیستم گرمایش کف

•سیستم آب گرم و سرد

6- لوله پلی پروپیلن

•سیستم آب گرم و سرد

•سیستم انتقال هوای فشرده

•سیستم فاضلاب خانگی ( جدید )

7- لوله پی وی سی

سیستم فاضلاب خانگی

•محافظ کابلهای برق و مخابرات

•سیستم انتقال آب تحت فشار

8- لوله پلی بوتیلن

•شبکه آبیاری و آبرسانی سرد و گرم

•انتقال آب شهری و بین شهری

•سیستمهای گرمایشی و سرمایشی

•انتقال مواد شیمیایی در دمای بالا

•( از جمله پر مصرفترینها در آمریکا )

9 – لوله ABS

•شبکه آبیاری و آبرسانی سرد و گرم

•سیستمهای گرمایشی و سرمایشی

•سیستم دفع فاضلاب

•مقاومت عالی در مقابل مواد شیمیایی

•امکان استفاده از اتصالات چسبی و رزوه ای

10 – لوله های تقویت شده با الیاف

•انتقال سیالات توسط نیروی ثقلی و فشاری

•تحمل فشارهای بسیار زیاد در صنایع نفتی

•دارا بودن ویژگی الکتریکی مناسب

•ابرسانی ، انتقال فاضلاب ، ضایعات خورنده

•انتقال نفت خام ، آب شور ، گاز طبیعی با فشار بالا

11- سایر لوله های پلیمری با شرایط خا ص

UPVC چیست؟ – درب و پنجره UPVC – مزایای استفاده از در و پنجره های UPVC

Posted by roueen in خط تولید پانل دیوارپوش پی وی سی on June 18, 2015 with Comments Off on UPVC چیست؟ – درب و پنجره UPVC – مزایای استفاده از در و پنجره های UPVC

UPVC چیست؟ – درب و پنجره UPVC – مزایای استفاده از در و پنجره های UPVC

این ماده که نخستین باردرسال 1912تولید آزمایشگاهی شد برپایه سنگ نمک ونفت تشکیل شده که طی فرآیندی شیمیایی وپس ازگذارازچندین مرحله به پودری سفید رنگ بدل می شود که پی وی سی نام دارد. پی وی سی در درآمدزایی ، یکی ازارزشمندترین فرآورده های شیمی به شمارمی رود.دردنیا بیش از50%پی وی سی تولیدشده درساختمان به کارمی رود.علاوه براین از پی وی سی به عنوان پلاستیک  سخت برای کارت های نوار مغناطیسی ، صفحات گرامافون ، سیستم لوله کشی و کانال نیزاستفاده می شود . همچنین با اضافه کردن افزودنی هایی که اصلی ترین آنها فتالیت است می توان پی وی سی را نرمتروقابل انعطاف ترکرد، آنگونه که امروزه درصنایع پوشاک ولوازم خانگی مانند پرده ، روکش مبل، ساخت شلنگ، لوله نرم وتاشو درکف سازی ساختمان ها و رویه بام ها وعایق سازی کابل های برق استفاده می شود.درآتش سوزی ها ،سیم های روکش شده با پی وی سی، گازهیدروژن کلراید تولید می کنند که کلر به عنوان از بین برنده ی رادیکال های آزاد، منشا موادی که احتراق را به تعویق می اندازد. امروزه این ماده یکی ازمهم ترین مواد ترموپلاستیک است که دربسیاری ازرشته ها ی ساختمانی ، صنعت، کشاورزی و بسیاری ازطرح های زیربنایی از آبرسانی و شهرسازی گرفته تا هواپیماسازی کاربرد های گسترده دارد. افزودن مواد پایدار کننده مانند کلسیم موجب افزایش عمر و مقاومت  پی وی سی در برابرعوامل فیزیکی محیطی و آب وهوایی دراقلیم های متفاوت جوی وثابت بودن رنگ دراثرگذشت زمان تابش نور خورشید می شود.ازگروه موادمصنوعی است . (Unplasticised Poly Vinyl Chloride (U.P.V.C

تاریخچه پیدایش درب و پنجره های upvc ساخت درب و پنجره های upvc

حدودآ درسال 1960 میلادی در اروپا آغاز گردید. با پیشرفت تکنولوژی و افزایش هزینه تولید درب و پنجره چوبی،آهنی و آلمینیومی استفاده از درب و پنجره های upvc رونق روزافزون یافته  است. سهولت ایجادتنوع در طرح و رنگ واستقامت فیزیکی و پایداری در برابر شرایط جوی متفاوت و همچنین قابل بازیافت بودن upvc به کار رفته ساخت این نوع درب و پنجره موجب تحولات عمده ای در این صنعت گردیده است.

تاریخچه تولید درب و پنجره upvc در ایران

در ایران اولین بار در اواخر دهه 50 واحد تولید پروفیل و ساخت درب و پنجره upvc حد فاصل شهرستان های بندرانزلی  و رشت احداث گردید و در سال های بعد واحد های تولیدی دیگری احداث گردید.

هزار دلیل برای استفاده از محصولات upvc

¨        درپنجره های معمولی ازبست های مکانیکی برای اتصال قطعات مختلف درب یا پنجره استفاده می شود وبه طورمعمول تعداد3عدد یا بیشترازورقه های فلزی برای اتصال به یکدیگر پیچ می شوند واگرحتی پیچ ها ازفولاد ضد زنگ باشند براثرایجاد واکنش گالوانیک پنجره ازهم پاشیده و یا از ریخت می افتد.درصورتیکه این مشکل درمحصولات پی وی سی وجود ندارد.پی وی سی ها به دلیل جوش خوردن و گداخته شدن با گرما و چسبیده شدن  به یکدیگر با فشارقوی، دارای مقاومت بسیاری درمقایسه با بست های مکانیکی قابها هستند.

مزایای استفاده از درب و پنجره های upvc

¨      مناسب دربرابرسرما وگرما

¨      کاهش دهنده مناسب شدت صوت

¨      مانع نفوذ گرد وغباروآلودگی های محیطی

¨      کاهش دهنده سرمایه گذاری اولیه و استهلاک سیستم گرمایشی درساختمان

¨      تنوع اشکال بازشو وشکل پذیری متناسب با معماری وفضای ساختمان

¨      صرفه جویی درمصرف انرژی تا40 درصد

¨      کاهش آلودگی صوتی

¨      کاهش آلودگی هوا

¨      کاهش هزینه تاسیسات سرمایشی وگرمایشی درساختمان

¨      درزگیری کامل

¨      تقویت مضاعف با استفاده از پروفیل گالوانیزه درداخل یوپی وی سی

¨      حفاظت ازمحیط زیست ازطریق بازیافت واستفاده درصنایع دیگر

¨      عدم نیازبه سرویس های مکرر(تعویض، رنگ آمیزی و…)

¨      غیرقابل اشتعال بودن

1-قدرت ووزن سبک:

سبک بودن ، قدرت مکانیکی خوب، استحکام دربرابرساییدگی، ازامتیازهای مهم تکنیکی اند که پی وی سی را برای استفاده درساخت وسازمناسب می کند.

2-سهولت درنصب:

پی وی سی به راحتی بریده می شود، شکل می گیرد، جوش داده ومتصل می شود.

3-ضدآتش بودن:

پی وی سی به سختی مشتعل می شود ووقتی عامل حرارت خاموش شود دیگرنمی سوزد.درمقایسه باجایگزین های پلاستیک معمولی، پی وی سی درشرایط جرقه واحتراق، شعله ورشدن و آزادکردن  حرارت، نسبت به سایرموادکم خطرتراست .

دارای مزیت های مهمی است وازنظرنشت کردن اسید، شعله ورشدن و تولید دود کم خطر وضدآتش است.

پی وی سی دربرابرتغییررنگ، فسادشیمیایی، پوسیدگی، ضربه و ساییدگی مقاوم است .ازاین رو به خاطرطول عمرزیاد، درمیان تولیداتی که درمحیط های بیرونی کاربرددارند، انتخاب خوبی به شمارمی رود.درحقیقت برای کاربردهای طولانی ومیان مدت درساخت وساز،85%استفاده ازمحصولات پی وی سی گزارش می شودوبیش از75%لوله های پی وی سی بیش از40سال وباعمربالقوه تاحدود100سال دوام خواهندداشت.درموارددیگرنظیر پروفیل پنجره وروکش های کابل ها مطالعات نشان می دهدکه بیش از60% آنها بیش از40سال عمرخواهندداشت.

پی وی سی درچرخه حیات درمقایسه با سایرمصالح به کاررفته درساخت وسازمطلوب دیده شده است. میزان انرژی صرف شده ومیزان استفاده از ذخایر برای تولید و تبدیل آن به محصول تمام شده، در مقایسه با سایرمصالح پایین است.

به عنوان ترموپلاستیک، پی وی سی رامی توان به صورت جداگانه و یا مخلوط با سایر پلاستیک ها بازیافت کرد.

تولیدات ساختمانی پی وی سی درمقایسه بابتن وآهن وفولادسبک ترند وبه مراتب کم ترازآنها به سوخت نیازدارند، مقاوم اند ودرصورت لزوم می توان پی درپی آنها را تعویض کرد وعایق حرارتی بودن پنجره ها به صرفه جویی انرژی درساختمان کمک می کند.

6-عایق خوب

جریان برق ازپی وی سی عبورنمی کند وبه همین دلیل ماده خوبی

برای روکش کابل هابه شمارمیرود.

7- انطباق پذیری (چندمنظوره بودن)

ویژگی های فیزیکی پی وی سی باعث میشوددرطراحی محصول جدیدوپیداکردن راه حل،ازپی وی سی به جای ماده جایگزین بامرمت کننده استفاده شود.پی وی سی برای داربسشت بیلبوردها، ووسایل طراحی داخلی، چارچوب پنجره ها،سیستم آب رسانی ، روکش کابل ها و…کاربرددارد.

ازجمله موادافزودنی که کیفیت پی وی سی راشدیداتحت الشعاع قرارمی دهد و باید به مقدار کافی درفرمولاسیون به کارگرفته شود:

پرکننده ها(fillers): که مقاومت ،الاستیسیته،چروکیدگی و سایر خواص محصول نهایی را تحت تاثیر قرار می دهند.

روان سازها: که جهت کمک به جریان مواددرقالب،هنگام عملیات اکستروژن وهمچنین ایجادسطح صیقلی وشفاف در پروفیلتولیدشده به کاربرده میشوند.

تثبیت کننده های حرارتی ورنگی

مقاومت پروفیل را دربرابرحرارت افزایش داده وباعث جلوگیری ازآسیب دیدن درب و پنجره ها در مجاورت هوای آزاد و حرارت حاصل از تابش خورشید می شوند و همچنین ازتغییرات رنگ و خراب شدن پروفیل دربرابراشعه ی ماورابنفش جلوگیری می کند.

Impact modifiers

افزایش پروفیل تولیدی دربرابرضربه وانعطاف پذیری بیشترمیشود.دی اکسیدتیتانیوم که علاوه برتنظیم شفافیت رنگ پروفیل تولیدی موجب بازتابش پرتوهای ماورابنفش میشود.

 

Recent Comments

    Back to Top

    2024 © همه حقوق این وبسایت برای شرکت آسترونکست محفوظ میباشد