سیلندر و ماردون

اکسترودر

Posted by roueen in اکسترودر تک مارپیچ on June 20, 2015 with Comments Off on اکسترودر

اکسترودر

نام انگلیسی: Extruder

اکستروژن یکی از روش های شکل دهی است که برای کاهش ضخامت یا سطح مقطح مواد به کار میرود. اکستروژن روشی بسیار انعطاف پذیری است و با استفاده از حدیده مناسب می توان طیف وسیعی از تولیدات را تهیه کرد. به عنوان مثال: تولید دانه گونه Granule production، تولید پروفیل Profile production، تولید ورقه های بسیار نازک به طریقه دمشی Film blowing، قالبگیری دمشی Blow Molding.اکسترودر یعنی مجموعه محفظه و ماردون که می توان به عنوان بدنه و واحد اصلی تولید قطعاتی با اشکال مختلف به کاربرد. اکسترودرها به دودسته اکسترودر تک ماردونهواکسترودر دو ماردونه تقسیم بندی می شوند. اکسترودر ماردونه سه قسمت مجزا دارد ناحیه تغذیه Feed Zone. ناحیه تراکم و فشردگی Compression Zone و ناحیه اندازه گیری و سنجش.
یکی از مهمترین ویژگی پلیمرها و به ویژه پلاستیک ها سهولت شکل پذیری آنهاست . در بعضی حالات، قطعات نیمه کاملی نظیر ورقه ها یا میله های تولید شده، متعاقباً با استفاده از روشهای متداول ساخت، مانند جوشکاری یا ماشین کاری به قطعه نهایی تبدیل می شود. اما در بسیاری مواقع، قطعه نهایی، علیرغم برخورداری از شکلی کاملاً پیچیده، طی یک مرحله تولید می شود. عملیات حرارت دادن، شکل دادن و خنک کردن ممکن است( مانند تولید لوله به روش اکستروژن) به دنبال یکدیگر و بدون وقفه (Continuous) انجام شود و یا ممکن است طی مراحلی ناپیوسته، زمانگیر و تکرار شونده( مثل عملیات تولید تلفن خانگی به روش قالبگیری تزریقی) صورت پذیرد که در اکثر موارد، فرایند به طور خودکار انجام شده برای تولید انبوه بسیار مناسب است . طیف وسیعی از روشهای شکل دهی برای پلاستیک ها و پلیمرهای شکل پذیر کاربرد دارد. در بسیاری از حالات انتخاب روش به چگونگی شکل نهایی قطعه و گرما نرم یا گرما سخت بودن ماردون بستگی دارد . بنابراین در عملیات طراحی، آگاهی طراح از روش های متنوع شکل دهی، حائز اهمیت است زیرا اشکال ناجور و نامناسب قطعه و یا مسائل جزئی کار طراحی، ممکن است محدودیت هایی در انتخاب روش قالبگیری برای طراح ایجاد کند. دسته بندی اکسترودرهای متداول این دسته بندی شامل گونه های زیر می شود.

اکسترودر تک ماردونه
نام انگلیسی: One Screw Extruder
یکی از متداولترین روشهای شکل دهی پلاستیک ها، اکستروژن است که از یک ماردون در داخل محفظه ای تشکیل شده است. پلاستیک ها معمولاً به صورت دانه ای شکل یا خاکه نرم از قیف به ماردونه تغذیه می شود . آنگاه در حال حمل به وسیله ماردون در طول محفظه، در اثر هدایت حرارت از طرف گرم کننده های محفظه (Barrel Heaters) و برش ناشی از حرکت بر روی لبه های ماردون گرم می شود . عمق معبر (Channel-Depth) در طول ماردون کاهش یافته موجب فشرده شدن مواد می شود . در انتهای محفظه اکسترودر، مذاب با عبور از حدیده ای به شکل مورد نظربرای محصول نهایی در می آید.همانطورکه بعدا خواهیم دید، به دلیل امکان استفاده از حدیده های مختلف، اکسترودر یعنی مجموعه محفظه و ماردون را می توان به عنوان بدنه و واحد اصلی تولید قطعاتی با اشکال مختلف به کاربرد اکسترودر ماردونه سه قسمت مجزا دارد:

الف) ناحیه تغذیه (Feed Zone): کار این ناحیه، دادن گرمای اولیه به پلاستیک و انتقال آن به نواحی بعدی است . طراحی این ناحیه حائز اهمیت است. زیرا عمق ثابت ماردون طوری انتخاب شود که مواد لازم و کافی را به ناحیه اندازه گیری (Metering Zone) تغذیه کند؛ به طوری که نه دچار گرسنگی شود و نه در اثر زیاد بود ن مواد، لبریز و پس زده شود. طراحی مناسب (Optimum) و متعادل، به طبیعت و شکل مواد تغذیه شونده (Feedstock) ،شکل هندسی (Geometry) ماردون و خواص اصطکاکی پلاستیک نسبت به ماردون و محفظه بستکی دارد . رفتار اصطکاکی مواد تغذیه شده، تاثیر قابل توجهی بر آهنگ ذوب شدن مواددارد.

ب) ناحیه تراکم و فشردگی (Compression Zone): در این ناحیه، عمق ماردونه به تدریج کاهش می یابد که موجب متراکم شدن و فشردگی پلاستیک می شود. این فشردگی دو نقش عمده ایفا می کند؛ یکی آنکه هوای محبوش در داخل مواد را به ناحیه تغذیه می راند و دیگر آنکه انتقال حرارت را با کاهش دادن ضخامت مواد بهبود می بخشد.

ج) ناحیه اندازه گیری و سنجش: در این ناحیه، عمق ماردونه یکسان و ثابت، اما بسیار کمتر از عمق ناحیه تغذیه است. در این ناحیه، مذاب به صورت همگون و یکنواخت در می آید به طوری که با آهنگ ثابتی، در درجه حرارت و فشار یکسان و ثابت، به حدیده تغذیه می شود. این ناحیه به سهولت و سادگی تحلیل و ارزیابی می شود؛ زیرا مشتمل بر جریان مذاب گرانروان در داخل مجرایی با عمق و ابعاد ثابت است.
طول نواحی سه گانه ماردون خاص، بستگی به ماده ای دارد که تحت اکستروژن قرار می گیرد . برای نمونه نایلون خیلی سریع ذوب می شود، به طوری که تراکم و فشردگی مذاب در طول یک گام از ماردون نیز قابل تامین است. اما پلی وینیل کلراید، به حرارت بسیار حساس است و لذا طول ناحیه فشردگی برای آن برابر با طول ماردون است. از آنجا که پلاستیک ها دارای گرانروی های متفاوت هستند، رفتار آنها در خلال اکستروژن نیز متفاوت است.

آهنگ وزنی خروجی واقعی 25 % با آنچه نشان داده شده اختلاف نشان می دهد که بستگی به دما، سرعت ماردون و غیره دارد. در اکسترودرهای تجاری، نواحی اضافی برای بهبود کیفیت محصول به ماردون افزوده می شود. به عنوان نمونه، ناحیه اختلاطی (Mixing Zone) مشتمل بر پلکان هایی (Flights) با گام کمتر یا معکوس، به منظور کسب اطمینان از یکنواختی مذاب و کافی بودن آن در منطقه اندازه گیری، استفاده می شود .
برخی از اکسترودرها ناحیه هواگیری(منفذ خروج هوا) وجود دارد. وجود این ناحیه به این دلیل است که برخی پلاستیک ها جاذب رطوبت(Hygroscopic)  هستند یعنی از محیط اطراف خود رطوبت جذب می کنند و اگر به همین صورت مرطوب در اکسترودر فاقد ناحیه هواگیری استفاده شوند، کیفیت محصول نهایی خوب نیست؛ زیرا در داخل مذاب، بخار آب محبوس می شود . برای رفع این مشکل راه حل آن است که مواد تغذیه شونده به اکسترودر را قبلاً خشک کنیم. این روش گران و پر هزینه است و امکان آلودگی نیز در مواد ایجاد می کند. روش دوم، استفاده از محفظه های منفذدار (Vented Barrels) است . در اولین قسمت ماردون، مواد که به صورت دانه بندی است، پس از ورود ذوب شده، سپس به طریق معمول فشرده و همگن می شود. آنگاه با ورود به ناحیه غیر فشردگی (Decompression-Zone) ،فشار مذاب به محیط کاهش می یابد؛ این عمل، امکان خروج و گریز بخار و سایر مواد فرار از داخل مذاب را از طریق منفذ تعبیه شده در بدنه اکسترودر فراهم می کند. آنگاه مذاب در طول محفظه به ناحیه دوم فشردگی هدایت می شود تا از محبوس شدن هوا در مذاب ممانعت به عمل آید. دلیل دفع بخار این است که در دمایی برابر با 250 درجه سانتیگراد، بخار آب موجود در پلاستیک مذاب دارای فشاری برابر 4 MN/m2 است که موجب خروج آسان آن از مذاب و گریز از منفذ خروج می شود . توجه کنید که چون فشار محیط تقریباً 0.1 MN/m2 است، استفاده از مکش خلاء (Vacuum) در منفذ خروجی، اثر ناچیزی در خروج بخار و مواد فرار دارد. یکی دیگر از اجزای مهم اکسترودر، صافی (Gauze Filter) پس از ماردون و پیش از حدیده است. این صافی به صورت کاملاً موثری هرگونه مواد ناهمگون و ناخالص یها را از مذاب جدا می کند . عدم وجود آن حتی ممکن است موجب انسداد حدیده گردد. این صفحات صاف و غربال کننده معمولاً مذاب را تا مقیاس 120 تا 150 mصاف و تصفیه می کنند. اما شواهد موجود نشان می دهد که ذراتی کوچکتر از مقیاس فوق، موجب شروع ایجاد ترک های مویین در تولیدات پلاستیکی نظیر لوله های تحت فشار پلی اتیلنی می شود . برای چنین مواردی صافی های بسیار ظریفی در مقیاس 45 mبه کار می رود که به گونه ای موثر و جالب توجه، کیفیت و عمر مفید محصول را بهبود می بخشد. از آنجا که این صافی های ظریف آسیب پذیر است، توسط صفحه سرعت شکنی (Breaker plate) هدایت می شود. این صفحه تعداد زیادی سوراخهای مماس بر یکدیگر و بسیار تنگاتنگ دارد که بدون اینکه به ذرات جامد سوخته (Dead-Spots) احتمالی همراه با مذاب اجازه ورود دهد، مذاب را عبور می دهد. این صفحه سرعت شکن همچنین جریان مذابی را که پس از خروج به صورت حلزونی در آمده است خطی می کند. چون منافذ این صافی های ظریف به تدریج بسته می شود، پی در پی باز شده، تعویض می شود . در بسیاری از اکسترودرهای پیشرفته با صافی های ظریف، کار تعویض آنها بدون نیاز به توقف اکسترودر صورت می گیرد . همچنین باید خاطر نشان کنیم که اگرچه این وظیفه اصلی صفحه سرعت شکن و صاف نیست؛ اما به ایجاد فشار معکوسی که موجب بهبود اختلاط مذاب می شود کمک می کند. چون فشار در حدیده حائز اهمیت است، شیری (valve) پس از صفحه سرعت شکن در اکسترودر وجود دارد که امکان تنظیم لازم را فراهم می آورد. چگونگی جریان (Mechanism of flow) پلاستیگ با حرکت در طول ماردون به صورت زیر ذوب می شود. نخست لایه نازکی (Thin Film) از ماده مذاب در جداره محفظه تشکیل می شود. با چرخش ماردون این لایه از جداره محفظه کنده شده به قسمت جلوی پیکان ماردون انتقال می یابد و وقتی که به سطح خود ماردون (Core of screw) می رسد، دوباره به طرف بالا جاروب می شود. بدین ترتیب حرکت چرخشی در جلوی پیکان ماردون(پیشانی ماردون) به وجود می آید . در آغاز، پلکان ماردون حاوی دانه های جامد است که در اثر حرکت چرخشی به داخل حوضچه مذاب جاروب می شود. با استمرار چرخش ماردون، مواد بیشتری به داخل حوضچه مذاب ریخته می شود. تا اینکه در نهایت فقط مواد مذاب است که پلکانهای ماردون اکسترودر وجود دارد. در اثنای گردش ماردون در داخل محفظه، حرکت مواد در راستای طول ماردون بستگی به چسبندگی مواد به ماردون یا محفظه دارد. به طور نظری در مرز افراط و تفریط (Extremes) وجود دارد. در یکی فقط مواد به درون ماردون چسبیده است، در نتیجه ماردون و مواد مانند استوانه توپر و جامدی در داخل محفظه می چرخد. در این حالت نامناسب هیچ خروجی وجود ندارد . در حالت دوم، مدار روی ماردون می لغزد و مقاومت زیادی در برابر گردش ماردون در داخل محفظه به وجود می آورد. در این حالت حرکتی در جهت محور دستگاه برای مذاب فراهم می شود که بهترین حالت ممکن است. در عمل، رفتار واقعی، حالتی بین دو واحد است زیرا مواد هم به ماردون و هم به بدنه اکسترودر می چسبد. خروجی مناسب ناشی از به وجود آمدن جریان کشنده و جلو برنده ای (Drag flow) در اثر چرخش ماردون و سکون محفظه است که به حرکت سیال گرانروان بین دو صفحه موازی شباهت دارد که در آن صفحه ای ثابت و صفحه دیگر دارای حرکت است. علاوه بر این، جریان دیگری هم ناشی از اختلاف فشار بین دو انتهای ماردون است وجود دارد وبه این دلیل که حداکثر فشار در انتهای اکسترودر به وجود می آید، جریان فشاری (Pressure flow) خروجی را کاهش می دهد. همچنین به دلیل فاصله (Clearance) که بین پلکانهای ماردون و بدنه اکسترودر وجود دارد اجازه نشتی به مواد در جهت عکس امتداد ماردون داده، به طور موثری خروجی گاز را کاهش می دهد . فرار و گریز مواد به سمت عقب ماردون در حالتی که ماردون فرسوده (Worn) باشد بیشتر است. گرما یا سرمای خارج اکسترودر نیز نقش مهمی در نحوه ذوب شدن مواد ایفا می کند. در اکسترودرهایی که دارای خروجی زیادی هستند، مواد، طول محفظه اکسترودر را سریع می کند. در نتیجه گرمای ذوب شدن کامل در اثر عمل برش تولید می شود و به استفاده از حرارت دهنده های خارجی محفظه اکسترودر نیازی نیست. بنابراین در این حالت اگر گرمای زیادی در مذاب به وجود آمده باشد سرد نگه داشتن محفظه حائز اهمیت است . در برخی مواقع خنک کردن ماردون اکسترودر نیز لازم است که البته اثری بر درجه حرارت مذاب ندارد . اما اثر مالشی(اصطکاکی ) بین پلاستیک و ماردون را کاهش می دهد . در همه اکسترودرها خنک کردن محفظه اکسترودر در ناحیه تغذیه ضروری است و لازم است تا بتوان اطمینان کاملی از تغذیه بدون درد سر مواد به اکسترودر به دست آورد. طبیعت و حالت گرمایی مذاب در اکسترودر با دو حالت ترمودینامیکی مقایسه می شود. اولی حالت بی دررو(Adiabatic) است؛ به این مفهوم که سیستم کاملاً مجزا از محیط خارج است و هیچ جذب و دفع حرارتی در آن رخ نمی دهد. اگر این حالت مطلوب در اکسترودر حاکم نباشد، فقط مقداری کار لازم است روی مذاب انجام شود تا گرمای معین تولید کند که به ازاء آن هیچ ضرورتی به گرم یا سرد کردن دستگاه نباشد . حالت مطلوب دوم، به همدما (Isothermal) موسوم است که در این حالت، درجه حرارت در تمام نقاط مذاب یکسان است و در نتیجه محفظه به گرم کردن و سرد کردن مستمر و دائمی برای جبران هرگونه اتلاف یا اخذ حرارت از مذاب برای ثابت ماندن دما نیاز دارد. در عمل، عملیات حرارتی در اکسترودرها بین دو حالت مرزی فوق قرار دارد. اکسترودرها ممکن است بدون هیچ حرارت دهنده یا سرد کننده خارجی کار کنند. لیکن در واقع در این صورت بی در رو نیست؛ زیرا اتلاف حرارت به وقوع می پیوندد. از طرف دیگر با حالت همدما در تمام طول اکسترودر مواجه نیستیم زیرا دانه های جامد نسبتاً سردی به اکسترودر تغذیه می شود . اما برخی از نواحی اکسترودر ممکن است خیلی نزدیک به حالت همدما باشد. معمولاً ناحیه انداره گیری در بحث و تحلیل همدما در نظر گرفته می شود. در حالت کلی: جریان خروجی از اکسترودر را برآیند سه مولف می دانیم جریان جلو برنده و کشنده جریان فشاری جریان نشتی (Leakage flow)

اکسترودر دو ماردونه
نام انگلیسی: Two Screw Extruder
مشخصه های عمومی اکسترودر دوماردونه در سالهای اخیر استفاده از اکسترودرهای دوماردونه که در داخل محفظه داغ اکسترودر حرکت چرخشی دارد، افزایش یافته است. این دستگاه ها در مقایسه با اکسترودرهای تک ماردونه تفاوتهایی در آهنگ خروجی، بازده اختلاط، حرارت تولید شده و نظایر آن نشان می دهد . خروجی اکسترودر دوماردونه معمولاً سه برابر اکسترودر تک ماردونه ای با همان قطر و سرعت است. اگرچه اصطلاح ماردون دوقلو اصطلاحی بین المللی برای اکسترودرهای دو ماردونه است؛ اما دو ماردون لزوماً یکسان نیستند. در واقع انواع گوناگونی از این دستگاه موجود است . برخی از آنها را که دارای ماردون هایی با گردش در جهت مخالف یا موافق یکدیگر است نشان می دهد و به علاوه ماردونها ممکن است به صورت جفت شده (Conjugated) یا جفت نشده (Non-Conjugated) باشند. در حالت جفت نشده، بین پلکان های ماردون فضای خالی وجود دارد که امکان حضور مواد را نیز فراهم می کند. در اکسترودر دو ماردونه ای با جهت چرخش مخالف یکدیگر، مواد دچار برش و فشردگی می شوند(نظیر آنچه در غلتکرانی رخ می دهد) یعنی مواد بین غلتک هایی با جهت چرخش متفاوت، فشرده می شود . دراکسترودر حاوی دو ماردون با جهت چرخش یکسان، مواد از یک ماردون به دیگری منتقل می شود. این گونه آرایش برای مواد حساس به حرارت کاملاً مناسب است؛ زیرا مواد در اکسترودر به سرعت منتقل می شود بدون اینکه کمترین احتمال ماندگار شدن موضعی (Entrapment) مواد وجود داشته باشد. حرکت مواد در اطراف ماردون های جفت نشده کمتر(کندتر) است ولی نیروی جلوبرنده (Propulsive) بزرگتر است.

روش های شکل دهی با استفاده از اکسترودر
اکستروژن روشی بسیار انعطاف پذیری است و با استفاده از حدیده مناسب می توان طیف وسیعی از تولیدات را تهیه کرد. برخی از این روش های بسیار متداول را در اینجا ذکر می کنیم:
– تولید دانه گونه (Granule production)
– تولید پروفیل (Profile production)
– تولید ورقه های بسیار نازک به طریقه دمشی (Film blowing)
– قالبگیری دمشی (Blow Molting)

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

سیلندر و مارپیچ – طراحی مارپيچ در قالب گیری تزریقی

Posted by roueen in اکسترودر تک مارپیچ on June 19, 2015 with Comments Off on سیلندر و مارپیچ – طراحی مارپيچ در قالب گیری تزریقی

سیلندر و مارپیچ – طراحی مارپيچ در قالب گیری تزریقی

در این مقاله تفاوت‌های مشاهده شده بین فرآیند پلاستیک‌ها در صنایع اکستروژن و قالب‌گیری تزریقی مورد بررسی قرار گرفته‌اند. ملزومات برای فرآیند کردن یک پلاستیک در قالب‌گیری تزریقی مشابه اکستروژنی است، اما بسیاری از عبارات متفاوتند. برای مثال سرعت توليد در اکستروژن در مدل آمريكائي به صورت pph/rpm و در تزریق به صورت oz/sec تعریف می شود. البته تفاوت اولیه این دو فرآیند این است که فرايند اکستروژن پیوسته و فرايند تزریق به صورت آغاز-ايست است. از آنجائی‌که فرايند اکستروژن پیوسته است، بررسی کیفیت ماده‌ی فرآیند شده راحت‌تر از تزریق است. سامانه‌های اکستروژنی به طور طبیعی و با دقت، فشار مذاب، دمای مذاب و آمپراژ را نشان می‌دهند. اندازه محصول پایانی به صورت پیوسته تا هزارم یک اینچ و یا حتی بهتر اندازه‌گیری می‌شود. با چنین مشاهده‌ی پیوسته‌ای، مشکلات کیفی به سرعت مشخص می‌شوند. کیفیت ماده‌ی خروجی از سيلندر در قالب گیری تزریقی معمولا هنگامی مورد توجه قرار می‌گیرد که بين قطعات تفاوت‌هاي فاحشي مشاهده شود مثل پديداري رگه‌های رنگ یا عدم اختلاط مشهود، زمان‌های بازگشت که باعث افزایش زمان چرخه توليد می‌شوند، دماهای مذاب که یا كم هستند که در این حالت با همراه شدن با فشارهای تزریق ناکافی به قالب اجازه پر شدن نمی‌دهد (Short shot)، و یا این دماها بسیار بالا هستند که باعث چکه کردن از افشانك تزريق و یا پليسه دادن می‌شوند. دلایل این فقدان مشاهده‌ی کیفیت مناسب ماده فرآیند شده دو علت است:
اول: بیشتر قطعاتی که قالب‌گیری مي‌شوند در ابتدا برای استفاده از یک بسپار مشخص با خواص فیزیکی کافی طراحی می‌شوند. قطعات آزمایش می‌شوند و در نهایت تحت تولید قرار می‌گیرند. قالب‌گیری واقعی ممکن است در ماشینی انجام شود که فشار تزریق کافی نداشته باشد. در این حالت برای غلبه بر کمبود فشار تزریق، اپراتور فشار و دمای سیلندر را افزایش می‌دهد تا ماده بتواند قالب را پر کند. به ندرت رخ می‌دهد اپراتور بررسی کند که آیا دما بسیار بالا است یا نه، چرا که وظیفه او پر کردن قالب و توليد قطعه است و احتمالا نمی‌داند که به دلیل افزایش دما یا برش امکان تخریب وجود دارد. بعد از اینکه قطعه در تولید قرار گرفته است، آزمایش فیزیکی معمولا زمانی انجام می‌گیرد که نقصی رخ دهد.
دوم: شرکت‌های تولید‌کننده ماشین‌های تزریق، توسط قالب‌ سازها مورد الزام قرار نمی‌گیرند تا فناوری فرآیند را بهبود دهند چرا که قالب‌ ساز از نیاز برای یک سطح بالا از فناوری فرآیند و یا ناشی از فناوری فرآیند بهبود یافته آگاه نیست. فناوری‌های فرآیندی بسیار کمی انتقال از اکسترودر به قالب‌گیری تزریقی را انجام داده‌اند. تفاوت‌های سخت‌افزاری بین اکستروژن و تزریق:

1- L/D:
طول تقسیم بر قطر (طول مارپیچ یا سیلندر تقسیم بر قطر داخلی سیلندر یا قطر خارجی پیچ ) در اکستروژن به طور معمول 30:1 و یا بیشتر است، در حالی‌که در قالب گیری تزریقی 20:1 نیز طبیعی است. در تزریق بدلیل اینکه مارپیچ عمل رفت و برگشت را نيز انجام می‌دهد طول مارپیچ کاهش یافته است. مقدار کاهش طول موثر مارپیچ ارتباط مستقیمی با مقدار تزریق دارد. بنابراین هرچه مقدار تزریق بیشتر باشد، گرسنگی مارپیچ از بسپار بیشتر است چرا که بسپار ورودی نسبت به اولین گام به سمت جلو منتقل شده است. طراحی‌های مارپیچ تزریقی معمولا تغییرات اضافی برای قسمت خوراک‌دهی دارند تا این گرسنگی را جبران کنند.
طول سیلندر و مارپیچ اکستروژن از 20:1 به 30:1 و بیشتر افزایش یافته است. دلیل این افزایش طول در فرمول‌های مربوط به سرعت جریان و جریان فشاری توصیف شده است. سرعت جریان بر حسب اینچ مکعب در ثانیه برابر است با:
Q total = Q drag + Q pressure – Q leakage
Q pressure = p D h3 P sin2 f / 12 u L
که در معادله جریان فشاری، رابطه L خطی و h به توان 3 است. ابن بدین معنی است که هر گونه افزایش در عمق می بایست افزایش مناسبی در طول داشته باشد یا در غیر این صورت مقدار جریان فشاری جریان کلی را کاهش خواهد داد. این فرمول انتقال حرارت و ذوب را در نظر نمی گیرد و تنها برای نشان دادن مقادیر در حالت گرانروي ثابت ساده سازی شده است.

مزایای استفاده از نسبت‌های طول به قطر بالا در اکستروژن عبارتند از:

افزایش سرعت ( زمان های بازگشت کاهش یافته)
دمای مذاب كم‌تر
نوسانات دما و فشار کمتر
بهبود بازدهی انرژی
موارد الف و ب کاهش زمان چرخه را سبب می شوند: مورد الف زمان چرخه را کاهش می‌دهد در صورتی‌که بازگشت یک عامل محدود کننده باشد. مورد ب زمان لازم برای بسته بودن قالب را کاهش می‌دهد، از این رو هر دو عامل زمان چرخه را کاهش می‌دهند. اگر دمای پایین مذاب بدلیل کمبود فشار یا سرعت کافی تزریق باعث تزریق کم شود، یا اگر قالب در حین تزریق باز شود (کم بودن میزان تناژ قفل‌شدگی قالب) در این حالت یا واحد تزریق به خوبی انتخاب نشده است و یا اینکه اندازه نادرستی از ماشین انتخاب شده است. هدف بکار بردن کمترین دمای مذاب ممکن نیست بلکه دمای مذابی است که تولید کننده توصیه کرده است. در بسیاری از کاربردها مشاهده شده است که دمای مذاب مشاهده شده بالاتر از دمای توصیه شده است. کوچک سازی اندازه (کاهش قطرهای سیلندر و مارپیچ ) همراه با نسبت طول به قطر زياد می‌تواند یک راه حل برای فشار تزریق ناکافی باشد. اندازه تزریق باید مورد بررسی قرار گیرد تا قطر مناسبی انتخاب شود. در بسیاری از موارد ، سرعت بازگشت می‌تواند ثابت نگاه داشته و یا افزایش یابد. کاربردهای نيازمند محل گازگيري در صنعت قالب‌گیری تزریقی که دارای همان سیلندر و نسبت طول به قطر مارپیچ (20:1)، به سرعت در حال جایگزین شدن با سامانه‌های بدون گازگير ولي با خشک‌کن می‌شوند. استفاده از یک سامانه‌ی گازگير برای بیرون کشیدن بخار و مواد فرار در صورتی‌که طراحی مناسبی داشته باشند، دارای مزایای اقتصادی بسیار بیشتری هستند. در اکستروژن نسبت طول به قطر 30:1 برای گازگيري مناسب است. جریان در ناحيه‌ي گازگيري در یک سامانه‌ی با طراحی مناسب وجود ندارد. فناوری برای بکار بردن سامانه‌های گازگيردار و استفاده از مزایای آنها بدون معایب مشاهده شده در استفاده نادرست و طراحی ضعیف وجود دارد.

2- طراحی مارپیچ:

نسبت طول به قطر بالاتر برای قسمت‌های عمیق‌تر، امکان استفاده از عمق را می‌دهد که سرعت خروجی افزایش يابد. مشکلی که عمیق بودن ناحیه پيمايش يا پمپش (Metering) ایجاد می‌کند این است که به ذرات ذوب شده اجازه ورود به ناحیه پيمايش را می‌دهند. این ناحیه قادر به حذف این ذرات نیست، پس این ذرات به سمت انتهای جریان می‌روند که در بهترین حالت نوسانات گرانروی تولیدی در قطعه قالب‌گیری شد را ایجاد می‌کنند و در بدترین حالت حضور ذرات ذوب نشده در قطعه قالب‌گیری شده را سبب می‌شوند. در صنعت قالب‌گیری تزریقی عادی است که در شرایط فوق فشار پشت داي را بالا می‌برند، در هنگامی‌که محدودیتی (افزايش فشار) اعمال شود، سرعت جریان کاهش خواهد یافت و دمای مذاب افزایش می‌یابد. هم‌چنین پایداری فشار نیز ممکن است کاهش یابد. فشار پشت داي معمولا استفاده مي‌شود و همیشه یک جای‌گزین ضعيف برای طراحی نامناسب مارپیچ است. برای کاهش سرعت جریان در برابر فشار پشت داي با یک طرح مارپیچ کلی، ممکن است فرض شود که کانال‌های جریان انتهایي در مارپیچ می‌توانند انرژی برشی بیشتری را فراهم کنند تا ذوب مورد نیاز برای رسیدن به دمای مذاب یکنواخت را کامل کند. این مسئله به طور طبیعی نادرست است، چرا که بررسی مختصر طبیعت ویسکوالاستیک بسپارهای با گرانروي کم مورد استفاده در قالب گیری تزریقی این برداشت نادرست را تایید می‌کند. در صنعت اکستروژن، طراحی‌های مارپیچ معروف به حالت کلی به ندرت در اویل دهه 1950 مورد استفاده قرار گرفتند. در فرآیند اکستروژن این طراحی تک مرحله‌ای با گام مربعی نامیده می شود که در صنعت تزریق می‌توان به آن طراحی بدون هدف! گفت: یک سوء تفاهم متداول این است که طراحی برای مصارف عمومی با گذشت بیشتری صورت می‌گیرد و استفاده از یک محدوده وسیعی از گرانروي بسپار را ممكن می‌سازد. این مسئله درست نیست. یک اختلاط با طراحی مناسب یا یک مارپیچ سدگر دارای محدوده‌های کارایی بسیار وسيع‌تري است که ناشی از توانایی آن برای پخش کلوخه‌هایی است که به ناحیه پيمايش وارد می‌شوند. طراحی‌های نوین مارپیچ اختلاط مناسب و پخش رنگدانه را بدون کاهش سرعت و البته بدون افزایش فشار پشت داي فراهم می‌سازد. فراوانی بخش های اختلاط در صنعت تزریق در سال‌های اخیر ثابت می‌کند که عملا هر بخشي که در انتهاي قسمت پيمايش (metering) قرار گرفته باشد یک طراحی بی‌هدف را بهبود خواهد بخشید که البته به معنی بودن يكسان بودن همه‌ي بخش‌هاي اختلاط نیست.
طراحی‌های دارای سدگر که در ناحیه انتقالی مواد جامد را از مذاب جدا می‌کند، برای اولین بار در سال 1959 توسط Miallefer معرفی شدند، امروزه متداول‌ترین طراحی سدگر مورد استفاده توسط R.F.Drey در سال 1970 ثبت اختراع شده است. این طراحی هم‌چنین به طور موفقیت‌آمیزی در کاربردهای قالب‌گیری تزریقی با زمان بازگشت کم و کارایی بالا و در ابتدا با نسبت‌های طول به قطر كم بکار برده شده است. در فرآیند اکستروژن کارایی به صورت پوند بر ساعت rpm (pph/rpm) و پوند بر ساعت بر اسب بخار (pph/hp) نشان داده می‌شود. طراحی ناحیه پيمايش طولانی‌تر منجر به سرعت خروجی بهتر با همان فشار پشت داي می‌شود. از آنجایی‌که فشار پشت داي کاهش می‌یابد بازدهی بهبود می‌یابد. طراحی‌های بدون هدف در بسیاری از موارد قادر به کار در فشارهای پشت داي كم نیستند چرا که اختلاط رنگ ناکافی یا کیفیت ماده خروجی پایین است. این مثال تنها ناحیه پيمايش را توصیف می‌کند. که وظیفه این بخش ايجاد فشار است. اگر این ناحیه قادر به ايجاد فشار مورد نیاز نباشد، نیاز به ايجاد فشار به بالا دست جریان منتقل شود که باعث کاهش توانایی ايجاد فشار بالا دست و در این صورت کاهش سرعت ذوب شدن می‌شود.

3- بازخوانی گشتاور:

در صنعت اکستروژن در واقع همه ماشین‌ها با یک آمپرسنج تجهیز شده‌اند که به طور مستقیم گشتاور را نشان می‌دهد. اگر کاربر قصد پیدا کردن تنظیمات بهینه گرم کن سیلندر را داشته باشد، خواندن گشتاور ارزشمند است چرا که کاربر بوسیله آن تلاش می‌کند تا نقطه اوج در منحنی ضریب اصطکاک را بدست آورد . در هر دو طرف نقطه ی اوج ضریب اصطکاک کاهش خواهد یافت و متعاقب آن توانایی مارپیچ برای توسعه و انتقال فشار نیز کمتر خواهد شد. افزایش ضریب اصطکاک، گشتاور و بازدهی مارپیچ (pph/rpm) را افزایش خواهد داد که منجر به کار کردن با دماهای کمتری از مذاب نیز خواهد شد. برای مشخص کردن نقطه‌ي اوج این منحنی، یک روال دمایی متعلق به تولید کننده را باید انتخاب کرد ، سپس به ماشین اجازه داد تا در دماهای واقعی و بدون سرد کردن کار کند، در این حالت باید دماهای نواحی را 5 درجه کمتر از دماهای واقعی در نظر گرفت. افزایش درجه نشان دهنده تغییر آمپراژ یا فشار است. اگر آمپراژ یا فشار افزایش پیدا کرد این عمل را ادامه دهید و اگر کاهش یافت این عمل را متوقف و دماها را در حال خواندن آمپراژ یا فشار افزایش دهید. با کاهش آمپراژ یا فشار باید توقف کرد و تنظیماتی را انتخاب کرد که منجر به بالاترین فشار یا آمپراژ می شود. در قالب‌گیری تزریقی، گشتاور را می‌توان و می‌بایست از طریق فشار هیدرولیکی اعمالي روی مارپیچبررسی کرد. با در دسترس داشتن باز خوانی صحیحی از گشتاور، امکان تعیین کارایی مشابه با صنعت اکستروژن به کاربر داده می شود. لازم به ذکر است که انرژی استفاده شده توسط موتور محرك مارپيچ حداقل 70 درصد کل انرژی است که توسط یک ماشین قالب‌گیری تزریقی استفاده می‌شود بنابراین انتخاب مارپیچی با کارایی مناسب باعث صرفه جویی قابل توجهی در فرآیند قالب‌گیری تزریقی می شود.

4- بازخوانی فشار:

در اکستروژن، فشار داي با دقت خوبی توسط یک انتقال دهنده فشار در پایین دست جریان، پايش می‌شود. در فرآیند قالب‌گیری تزریقی بازخوانی شامل فشار پشت دای است، این همان فشار هیدرولیکی است که در سیلندر تزریق خوانده می شود. نسبت سیلندر تزریق یا سیلندرها به قطر داخلی پوسته اکسترودر معمولا 10 به 1 است. بنابراین دقت در این حالت 10 برابر کمتر از انتقال دهنده‌ای است که در پایین دست جریان (مثل فرآیند اکستروژن) قرار دارد. معمولا نوسانات بازخوانی فشار پشت دای در قالب گیری تزریقی در دسترس نیست. در بعضی از سامانه‌های تزریق دقت قربانی می‌شود، زیرا به دلیل اندازه‌ی نامناسب، شیرهای يك‌طرفه در فشارهای پایین به خوبی عمل کنترل را انجام نمی‌دهند. نوسانات فشار در فرآیند اکستروژن یکی از متغیرهای طبیعی در مارپیچ است که بازخوانی آن نیز انجام می‌شود. این نوسانات کارایی مارپیچ و هم‌چنین کیفیت و نوسانات محصول نهایی را تعیین می‌کنند. در قالب گیری تزریقی، بازخوانی دقیق فشار در مرحله بازگشت امکان تعیین کارایی مارپیچ را می‌دهد. در تزریق معمولا زمان بازگشت نسبت به دیگر متغییرهای ماشین تغییر بیشتری می‌کند. زمان بازگشت و تغییرات زمان بازگشت معمولا تنها نشانه‌ی موجود برای بررسی کارایی مارپیچ در ماشین‌های تزریق است. تقریبا در همه‌ی شركت‌های تولید ماشین‌های تزریق، زمان‌های آسودگی (که باعث افزایش زمان‌های چرخه‌ي توليد می‌شوند) در نظر گرفته نمی‌شوند. با طراحی مناسب مارپیچ ، می‌توان محدودیت‌های زمان آسودگی را حذف کرد و کیفیت محصول را بهبود داد. بعضی از تولید کننده‌های ماشین های تزریق با افزایش rpm زمان‌های آسودگی را کاهش داده‌اند که در صورت عدم طراحی مناسب مارپیچ می‌تواند منجر به حرارت برشی بالا و کیفیت پایین محصول شود. اما بر عکس، در بسپارهای مهندسی دما بالا با طراحی مناسب مارپیچ ، rpm بالا می‌تواند یک مزیت محسوب شود.

5- بازخوانی دما:

در فرآیند اکستروژن دمای مذاب را در پایین دست مارپیچ بدست می‌آورند. محل مناسب برای بدست آوردن دما در انتهای خروجی رابط است (شکل 2) که صحیح‌ترین حالت برای ترموکوپل حالت فرورفته در خط مرکزی جریان مذاب است (شکل 3). حالت مناسب دیگر حالت تماس محدود است (معمولا یک چهارم اینچ). با دوام‌ترین نوع نیز یک نوع سطحی است که البته کمترین میزان صحت را دارد. تغییرات دما به راحتی از طریق بازخوانی دیجیتالی قابل مشاهده و یا قابل ثبت روی ماشین‌های مجهز به ریزپردازنده است. در قالب‌گیری تزریقی، بازخوانی دمای ماده‌ی خروجی از اکسترودر معمولا امکان‌پذیر نیست. صحت در بازخوانی دما در اکسترودرها راحت‌تر از ماشین‌های قالب‌گیری تزریقی بدست می‌آید. اگر قصد بررسی دما در ماشین‌های قالب گیری تزریقی به مانند اکسترودرها را داشته باشیم، می‌بایست خروجی مارپیچ را بهنگام به عقب رفتن آن پايش کرد که بدیهی است این کار بسیار مشکلی است. با این حال این نوع از پايش، به خوبی تغییرات دما را در حین بازگشت توصیف نمی‌کند و فقط یک معیار خوب از دمای ماده ی اکسترود شده در حین تزریق است. حداقل فایده این حالت بدست آوردن نقطه ی مناسبی است که کاربر یا مهندس فرآیند می‌تواند داده ها آن را ثبت کرده و به آن ارجاع کند و در صورت ایجاد تغییرات بزرگ یا دماهای اضافی مخرب برای بسپار، آن را بهبود دهد. در حال حاضر برای قطعات قالب گیری شده تعیین دماهای ماده اکسترود شده بدون وقفه در چرخه ماشین غیر ممکن است.

نتیجه گیری:
کنترل کیفیت محصول در اکستروژن به صورت درون خطی قابل اندازه گیری است و با یک هزارم اینچ یا بهتر قابل بررسی است. درقالب‌گیری تزریقی با اینکه اندازه‌گیری دشوار‌تر است اما غیر ممکن نیست. ماشین های قالب‌گیری تزریقی جدید با ریز پردازنده‌هایی مجهز شده اند که کارکرد ماشین را کنترل و نمایش می‌دهند. بسیاری از این ماشین‌ها دارای کنترل فرآیند آماری (SPC) هستند که در صورت استفاده‌ی صحیح بسیار مفید هستند. همانطور که پیش تر شرح داده شد، در ماشین های قالب گیری تزریقی مشخصه های ضروری برای کنترل ماده ی اکسترود شده و کارایی مارپیچ در حال فراموش شدن هستند. بازخوانی‌های دقیق گشتاور مارپیچ، فشار و دمای مذاب در صنعت اکستروژن به عنوان موارد ضروری در نظر گرفته شده‌اند و استاندارد سازی نیز در مورد آنها صورت گرفته است که در مورد ماشین‌های قالب‌گیری تزریقی نیز این موارد باید در نظر گرفته شوند. بطور کلی واحد تزریق فراموش شده و فناوری فرآیند در آن در نظر گرفته نمی‌شود. فناوری مورد استفاده موجود، از دهه 1950 استفاده می شود. در دهه های 1950، 60و70 فناوری فرآیند در صنعت اکستروژن تغییرات اساسی کرده است. نیروی محرکه این تحولات ظهور تجهیزات اندازه گیری و پايش بود که می‌توانستند کیفیت محصول را به دقت نشان دهند. این تحولات با پدیدار شدن بسپارهای جدید همراه شد که این بسپارها نیاز به فناوری‌های جدیدتری از فرآیند داشتند. بدین ترتیب این فرآیند تکامل پیدا کرد و امروزه در دسترس است.
همین نوع از تحول در صنعت قالب‌گیری تزریقی نیز رخ خواهد داد. که البته با تاخیر در حال انجام شدن است و تغییراتی از قبیل طراحی‌های نوین ناحيه‌ي اختلاط و حتی نسبت طول به قطرهای طولانی‌تر در حال توسعه و اجرا هستند. مشکل اینجاست که در بسیاری از موارد صنعت قالب گیری تزریقی سعی در دوباره کاری در زمینه اختراع دارد. طراحی‌های اختلاط که قادر به بهبود کیفیت و نحوه‌ي بازگشت هستند با طراحی ضعیفی از مارپیچ همراه شده‌اند. طراحی‌های سدگردار با نسبت طول به قطرهایی همراه شده‌اند که قادر به فراهم کردن کارایی بالا و بهبود اختلاط نیستند. صنعت قالب‌گیری تزریقی به جای دوباره‌کاری در زمینه نوآوری بهتر است که تا نوآوری‌های صنعت اکستروژن را بررسی کرده و این فناوري‌ها را بکار بندند. لازمه‌های دو فرآیند اکستروژن و قالب‌گیری تزریقی بسیار شبیه هستند. هزینه‌های صرف شده برای نسبت‌های طول به قطر بالاتر برای مارپیچ، مشاهده و پايش بهتر و طراحی‌های پیشرفته‌تر مارپیچ در مقایسه با مزایای آن بسیار ناچیز است و با کاهش مصرف بسپار و ایجاد میزان کمتری از ضایعات قابل توجیه است. اگر واحد تزریق ماده اکسترود شده را با کیفیت، گرانروی و سرعت مناسب و کنترل مناسبی تولید کند، بسیاری از نقص‌ها در این زمینه قابل اجتناب هستند. علاوه بر آن تکرارپذیری برای هر مرتبه از تزریق باید فراهم شود. هنگامی‌که این دو لازمه اساسی به میزان کافی توسط واحد تزریق مورد توجه قرار گیرند، میزان ضایعات و نقص‌ها به طور چشمگیری کاهش خواهند یافت. تحول در فرآیند قالب‌گیری تزریقی باعث بالا رفتن سطح صنعت و رسیدن به جایگاه بسیار بالاتر خواهد شد. اگر ما قادر به حذف نوسانات از واحد تزریق باشیم و کیفیت مناسبی از ماده اکسترود شده را فراهم کرده و امکان افزایش زمان‌های بازگشت و زمان چرخه را حذف کنیم، آنگاه به طور واقع‌گرایانه‌تری می‌توانیم به طراحی قالب برای بهبود جریان پرداخته و مشکلات مربوط به کیفیت محصول ناشی از طراحی‌های ضعیف قالب را حذف کنیم.

پلی اتیلن چیست؟ تاریخچه پلی اتیلن – انواع پلی اتیلن و مزایای آنها

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on پلی اتیلن چیست؟ تاریخچه پلی اتیلن – انواع پلی اتیلن و مزایای آنها

پلی اتیلن چیست؟ تاریخچه پلی اتیلن، انواع پلی اتیلن و مزایای آنها

پلی اتیلن یا پلی اتن یکی از ساده‌ترین و ارزانترین پلیمرها است.
پلی اتیلن جامدی مومی و غیر فعال است. این ماده از پلیمریزاسیون اتیلن بدست می‌آید و بطور خلاصه بصورت PE نشان داده می‌شود.
مولکول اتیلن ( C2H4 ) دارای یک بند دو گانه C=C است. در فرایند پلیمریزاسیون باند دو گانه هر یک از مونومرها شکسته شده و بجای آن پیوند ساده‌ای بین اتم‌های کربن مونومرها ایجاد می‌شود و محصول ایجاد شده یک درشت‌مولکول است.

تاریخچه تولید پلی اتیلن
پلی اتیلن اولین بار بطور اتفاقی توسط شیمیدان آلمانی “Hans Von Pechmanv” سنتز شد. او در سال 1898 هنگام حرارت دادن دی آزومتان ، ترکیب مومی شکل سفیدی را سنتز کرد که بعدها پلی اتیلن نام گرفت.
اولین روش سنتز صنعتی پلی اتیلن بطور تصادفی توسط “ازیک ناوست” و “رینولرگیسون” ( از شیمیدان‌های ICI ) در 1933 کشف شد. این دو دانشمند با حرارت دادن مخلوط اتیلن و بنزالدئید در فشار بالا ، ماده‌ای موم‌مانند بدست آوردند. علت این واکنش وجود ناخالصی‌های اکسیژن‌دار در دستگاه‌های مورد استفاده بود که بعنوان ماده آغازگر پلیمریزاسیون عمل کرده بود. در سال 1935 “مایکل پرین” یکی دیگر از دانشمندهای ICI این روش را توسعه داد و تحت فشار بالا پلی اتیلن را سنتز کرد که این روش اساسی برای تولید صنعتی LDPE در سال 1939 شد.

استفاده از انواع کاتالیزورها در سنتز پلی اتیلن
اتفاق مهم در سنتز پلی اتیلن، کشف چندین کاتالیزور جدید بود که پلیمریزاسیون اتیلن را در دما و فشار ملایم‌تری نسبت به روش‌های دیگر امکان‌پذیر می‌کرد.
اولین کاتالیزور کشف شده در این زمینه تری اکسید کروم بود که در 1951 ، “روبرت بانکس” و “جان هوسن” در شرکت فیلیپس تپرولیوم آنرا کشف کردند. در 1953، “کارل زیگلر” شیمیدان آلمانی سیستم‌های کاتالیزور شامل هالیدهای تیتان و ترکیبات آلی آلومینیوم‌دار را توسعه داد. این کاتالیزورها در شرایط ملایم‌تری نسبت به کاتالیزورهای فیلیپس قابل استفاده بودند و همچنین پلی اتیلن یک آرایش (با ساختار منظم) تولید می‌کردند. سومین نوع سیستم کاتالیزوری استفاده از ترکیبات متالوسن بود که در سال 1976 در آلمان توسط “والتر کامینیکی” و “هانس ژوژسین” تولید شد.
کاتالیزورهای زیگلر و متالوسن از لحاظ کارکرد بسیار انعطاف‌پذیر هستند و در فرایند کوپلیمریزاسیون اتیلن با سایر اولفین‌ها که اساس تولید پلیمر های مهمی مثل VLDPE و LLDPE و MDPE هستند، مورد استفاده قرار می‌گیرند.
اخیرا کاتالیزوری از خانواده متالوین‌ها با قابلیت استفاده بالا برای پلیمریزاسیون پلی اتیلن به نام زیرکونوسن دی کلرید ساخته شده است که امکان تولید پلیمر با ساختار بلوری (تک آرایش) بالا را می‌دهد. همچنین نوع دیگری از کاتالیزورها به نام کمپلکس ایمینوفتالات با فلزات گروه ششم مورد توجه قرار گرفته است که کارکرد بالاتری نسبت به متالوسن‌ها نشان می‌دهند.

تاریخچه پلی اتیلن
كلمه پليمر از كلمه يونانى( پلى ) به معناى چند و ( مر ) به معناى واحد و يا قسمت بوجود آمده است . پلیمرها را اشتباها رزين ، الاستومر و پلاستيك نيز مى‌نامند.
در حالى كه پلاستيك تنها يك صفت است كه براى مواردى به كار مى رود كه قابليت تغيير شكل بر اثر فشار را دارا هستند و اغلب اشتباها به عنوان يك كلمه اصلى براى صنایع پلاستیک و توليدات آن به كار مى رود.
اولين بار كلمه پليمر توسط شيمى دانى به نام رنالت در سال 1835، به كار رفت و اولين كاربرد تجارى مواد پليمرى در سال 1834 با كشف كائوچو آغاز شد.
لكن اولين پلاستيك مصنوعى با نام نيترات سلولز در سال 1862 كشف و در سال 1868 وارد بازار شد.
نايلون در سال 1938، پلی اتیلن در سال 1942، پلی پروپیلن در سال 1957،پلى بوتيلن درسال 1974و پليمرهاى كريستال مايع براى ساخت اجزاى الكترونيكى در سال 1985رايج گرديدند.
پليمرها به سه نوع پلیمرهاى طبيعى ، طبيعى اصلاح شده و مصنوعى تقسيم مى شوند.
اولين پلاستيكهاى صنعتى مدرن حدود 100سال پيش رواج يافتند ولى در دهه هاى اخير رشد فزاينده و گوناگونى در صنايع به وقوع پيوست .
حدود 60پليمر بسيار مهم تاكنون به بازار عرضه شده كه مشتقات آنها به بيش از 2000مورد مى رسد و كماكان در حال افزايش است. پلى اولفينها پلیمرهاى گرما نرم با خواص تقريبا مشابه و فرمولاسيون نزديك به هم هستند كه انواع معروف آنها پلی اتیلن ها، پلی پروپیلن ها و پلى بوتيلن ها مى باشند كه در صنايع لوله،كاربرد فراوانترى دارند.

بررسی انواع مختلف پلی اتیلن ها و مزایای هر یک نسبت به دیگری
با يك نگاه به جدول زير متوجه میشويد از نظر انبساط، مقاومت در برابر حلالها، مقاومت كششى، مقاومت فشردگى، و مقاومت حرارتى و نفوذ پذيرى گازى پپلی پروپیلنها امتياز بيشترى نسبت به پلی اتیلنها داشته و به علت مقاومت حرارتى و مقاومت كششى پلى پروپيلنها از پلى بوتيلنها بهتر هستند. اين موارد از جمله مهمترين مواردى هستند كه در صنعت لوله كشى آب سرد گرم مورد نظر مى باشند و باعث امتياز پلى پروپيلن ها مى شوند. البته در اين ميان لوله هاى با تركيب پليمر و آلمينيوم نيز توليد شدند كه به دليل گرانى و اتلاف حرارتى و … به علت وجود فلز در آنها زياد مورد استقبال قرار نگرفت.

پلی پروپیلن ها پلى بوتلين ها پلی اتیلن ها ازنظر
مقاومت شيميايى
بسيارخوب
مقاومت شيميايى
بسيار خوب
مقاومت شيميايى
بسيار خوب
شيميايى
ارزان بدون فن آورى
تا حدى گران با فن آورى
تا حدى گران قيمت ارزان و موجود بودن در
انواع قابل مصرف
هزينه
26 حد اكثر ———————— 50 حد اكثر انبساط حرارتى
مورد حمله مورد حمله مورد حمله اسيدهاى اكسيد كننده
مي شكند لكن تثبيت مي گردد خرد مي شود تثبیت کننده دارد اثر نور خورشيد و اشعه ماوراى بنفش
آرام سريعاً ميسوزد آرام سرعت اشتعال
مقاوم تا
80 درجه سانتيگراد
مقاوم مقاوم تا
60 درجه سانتيگراد
در برابر حلالها
مقاوم مقاوم مقاوم در برابر بازها
31-62 26-30 4-38 مقاومت كششى
38-55 ————————– 19-25 مقاومت فشردگى
0/025-0/25 نمي شكند ( كاملاً ارتجاعى ) 25-1
مانند شلنگ نمي شكند
ضربه پذيرى ايزود
85-110    راك ول 55-65   شر 41-70   راك ول سختى
قابل استفاده در لوله كشى گاز ————————– غير قابل استفاده در خلاء نفوذ پذيرى گازى
110-160 کمتر از 110 80-120 مقاومت حرارتى  (درجه سانتيگراد)

لوله های پلیمری – انواع لوله های پلیمری

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on لوله های پلیمری – انواع لوله های پلیمری

لوله های پلیمری را میتوان از نظر نوع پلیمر بکار رفته در آن به صورت زیر فهرست نمود :

1.   لوله پلی اتیلن سنگین ( سخت ) تک لایه

2.   لوله پلی اتیلن سنگین ( سخت ) کاروگیت

3.   لوله پلی اتیلن سبک ( نرم )

4.   لوله پلی اتیلن شبکه ای

5.   لوله های تلفیقی

6.   لوله پلی پروپیلن

7.   لوله پی وی سی

8.   لوله پلی بوتیلن

9.   لوله ABS

10. لوله های تقویت شده با الیاف

11. سایر لوله ها ی پلیمری با شرایط خا ص

1- لوله های پلی اتیلن سنگین ( سخت ) تک لایه جزء پر مصرفترین لوله ها در انتقال آب و سایر سیالات بوده و دارای کاربردهای زیر میباشد :

•شبکه های زهکشی
•شبکه های آبرسانی شهری

•شبکه های فاضلاب شهری و روستایی
•شبکه های آب روستایی

•سیستمهای مایعات و فاضلاب صنعتی
•شبکه های آبیاری تحت فشار اعم از قطره ای و بارانی
•شبکه های گاز رسانی شهری
•شبکه زهکشی ساختمانها
•پوشش کابلها ی مخابراتی و فیبر نوری
•سیستم مخصوص مایعات بسیار ساینده
•سیستم آبیاری متحرک
•شبکه های آب آشامیدنی

……..

2- لوله های پلی اتیلن سنگین ( سخت ) دو جداره نیز جزء پر مصرفترین لوله ها در انتقال آب و سایر سیالات بوده و دارای کاربردهای زیر میباشد :

·         انتقال فاضلاب شهری ، روستایی و صنعتی

·         بعنوان جدار داخلی لوله های بتنی

·         انتقال هوا

·         انتقال ثقلی آب ، سیالات صنعتی

·         نمک زدایی  و زهکشی و جمع آوری آب های سطحی در شهر ها و مناطق صنعتی

·         جهت انتقال آب از زیر جاده ، پل و……

·         پل جاده های اصلی و فرعی و راه آهن

·         آب نما

·         سیلوی مواد و مایعات

·         ارتباط بین ساختمان ها

·         کانال تاسیسات در کارخانجات

·         قالب دائم پل هایی که ستون های دایره شکل دارند

·         آدم رو

·         ستون های تبلیغاتی موقت در شهرها

·         استفاده در پارک ها و منازل به عنوان گلدان

·         مخزن تصفیه بی هوازی فاضلاب

·         مقسم آب

·         سیفون انتقال آب زیر جاده ها و رودخانه ها و مسیل ها

·

3- لوله های پلی اتیلن سبک ( نرم )

•آبیاری قطره ای

•هیدرو فلوم

•آبیاری نواری

4- لوله پلی اتیلن شبکه ای

•سیستم گرمایش کف

•ذوب برفها

5- لوله های تلفیقی

•سیستم گرمایش کف

•سیستم آب گرم و سرد

6- لوله پلی پروپیلن

•سیستم آب گرم و سرد

•سیستم انتقال هوای فشرده

•سیستم فاضلاب خانگی ( جدید )

7- لوله پی وی سی

سیستم فاضلاب خانگی

•محافظ کابلهای برق و مخابرات

•سیستم انتقال آب تحت فشار

8- لوله پلی بوتیلن

•شبکه آبیاری و آبرسانی سرد و گرم

•انتقال آب شهری و بین شهری

•سیستمهای گرمایشی و سرمایشی

•انتقال مواد شیمیایی در دمای بالا

•( از جمله پر مصرفترینها در آمریکا )

9 – لوله ABS

•شبکه آبیاری و آبرسانی سرد و گرم

•سیستمهای گرمایشی و سرمایشی

•سیستم دفع فاضلاب

•مقاومت عالی در مقابل مواد شیمیایی

•امکان استفاده از اتصالات چسبی و رزوه ای

10 – لوله های تقویت شده با الیاف

•انتقال سیالات توسط نیروی ثقلی و فشاری

•تحمل فشارهای بسیار زیاد در صنایع نفتی

•دارا بودن ویژگی الکتریکی مناسب

•ابرسانی ، انتقال فاضلاب ، ضایعات خورنده

•انتقال نفت خام ، آب شور ، گاز طبیعی با فشار بالا

11- سایر لوله های پلیمری با شرایط خا ص

فروش ماشین آلات با برند مشتری

Posted by roueen in اکسترودرها on July 27, 2014 with Comments Off on فروش ماشین آلات با برند مشتری

این شرکت با دارا بودن دفتر فعال در چین آمادگی تولید کلیه ماشین آلات، لوازم آزمایشگاهی، تجهیزات، لوازم جانبی، دستگاه تزریق، قالب و …  مورد درخواست شما با برند شما دارا میباشد. 

Recent Comments

    Back to Top

    2025 © همه حقوق این وبسایت برای شرکت آسترونکست محفوظ میباشد