پلی اتیلن

اکسترودر -خط تولید لوله های پلی اتیلن – پلی اتیلن چیست ؟

Posted by roueen in اکستروژن پلاستیک on June 18, 2015 with Comments Off on اکسترودر -خط تولید لوله های پلی اتیلن – پلی اتیلن چیست ؟

اکسترودر – خط تولید لوله های پلی اتیلن – پلی اتیلن چیست ؟

پلی اتیلن چیست؟

پلی اتیلن یا پلی اتن یکی از ساده‌ترین و ارزانترین پلیمرها است. پلی اتیلن جامدی مومی و غیر فعال است. این ماده از پلیمریزاسیون اتیلن بدست می‌آید و بطور خلاصه بصورت PE نشان داده می‌شود. مولکول اتیلن دارای یک بند دو گانه C=C است. در فرایند پلیمریزاسیون بند دو گانه هر یک از مونومرها شکسته شده و بجای آن پیوند ساده‌ای بین اتم‌های کربن مونومرها ایجاد می‌شود و محصول ایجاد شده یک درشت‌مولکول است.

تاریخچه تولید پلی اتیلن

پلی اتیلن اولین بار بطور اتفاقی توسط شیمیدان آلمانی “Hans Von Pechmanv” سنتز شد. او در سال 1898 هنگام حرارت دادن دی آزومتان ، ترکیب مومی شکل سفیدی را سنتز کرد که بعدها پلی اتیلن نام گرفت. اولین روش سنتز صنعتی پلی اتیلن بطور تصادفی توسط “ازیک ناوست” و “رینولرگیسون” ( از شیمیدان‌های ICI ) در 1933 کشف شد. این دو دانشمند با حرارت دادن مخلوط اتیلن و بنزالدئید در فشار بالا ، ماده‌ای موم‌مانند بدست آوردند.علت این واکنش وجود ناخالصی‌های اکسیژن‌دار در دستگاه‌های مورد استفاده بود که بعنوان ماده آغازگر پلیمریزاسیون عمل کرده بود. در سال 1935 “مایکل پرین” یکی دیگر از دانشمندهای ICI این روش را توسعه داد و تحت فشار بالا پلی اتیلن را سنتز کرد که این روش اساسی برای تولید صنعتی LDPE در سال 1939 شد.

استفاده از انواع کاتالیزورها در سنتز پلی‌اتیلن

اتفاق مهم در سنتز پلی اتیلن ، کشف چندین کاتالیزور جدید بود که پلیمریزاسیون اتیلن را در دما و فشار ملایم‌تری نسبت به روش‌های دیگر امکان‌پذیر می‌کرد. اولین کاتالیزور کشف شده در این زمینه تری اکسید کروم بود که در 1951 ، “روبرت بانکس” و “جان هوسن” در شرکت فیلیپس تپرولیوم آنرا کشف کردند. در 1953 ، “کارل زیگلر” شیمیدان آلمانی سیستم‌های کاتالیزور شامل هالیدهای تیتان و ترکیبات آلی آلومینیوم‌دار را توسعه داد.این کاتالیزورها در شرایط ملایم‌تری نسبت به کاتالیزورهای فیلیپس قابل استفاده بودند و همچنین پلی اتیلن یک آرایش (با ساختار منظم) تولید می‌کردند. سومین نوع سیستم کاتالیزوری استفاده از ترکیبات متالوسن بود که در سال 1976 در آلمان توسط “والتر کامینیکی” و “هانس ژوژسین” تولید شد. کاتالیزورهای زیگلر و متالوسن از لحاظ کارکرد بسیار انعطاف‌پذیر هستند و در فرایند کوپلیمریزاسیون اتیلن با سایر اولفین‌ها که اساس تولید پلیمرهای مهمی مثل VLDPE و LLDPE و MDPE هستند، مورد استفاده قرار می‌گیرند.اخیرا کاتالیزوری از خانواده متالوین‌ها با قابلیت استفاده بالا برای پلیمریزاسیون پلی اتیلن به نام زیرکونوسن دی کلرید ساخته شده است که امکان تولید پلیمر با ساختار بلوری (تک آرایش) بالا را می‌دهد. همچنین نوع دیگری از کاتالیزورها به نام کمپلکس ایمینوفتالات با فلزات گروه ششم مورد توجه قرار گرفته است که کارکرد بالاتری نسبت به متالوسن‌ها نشان می‌دهند.

انواع پلی اتیلن

طبقه‌بندی پلی اتیلن ها بر اساس دانسیته آنها صورت می‌گیرد که در مقدار دانسیته اندازه زنجیر پلیمری و نوع و تعداد شاخه‌های موجود در زنجیر دخالت دارد.

HDPE(پلی‌اتیلن با دانسیته بالا)

این پلی اتیلن دارای زنجیر پلیمری بدون شاخه است بنابراین نیروی بین مولکولی در زنجیرها بالا و استحکام کششی آن بیشتر از بقیه پلی اتیلن‌ها است. شرایط واکنش و نوع کاتالیزور مورد استفاده در تولید پلی اتیلن HDPE موثر است. برای تولید پلی اتیلن بدون شاخه معمولا از روش پلیمریزاسیون با کاتالیزور زیگلر- ناتا استفاده می‌شود.

LDPE(پلی‌اتیلن با دانسیته پایین)

این پلی اتیلن دارای زنجیری شاخه‌دار است بنابراین زنجیرهای LDPE نمی‌توانند بخوبی با یکدیگر پیوند برقرار کنند و دارای نیروی بین مولکولی ضعیف و استحکام کششی کمتری است. این نوع پلی اتیلن معمولا با روش پلیمریزاسیون رادیکالی تولید می‌شود. از خصوصیات این پلیمر ، انعطاف‌پذیری و امکان تجزیه بوسیله میکروارگانیسمها است.

LLDPE(پلی اتیلن خطی با دانسیته پایین)

این پلی اتیلن یک پلیمر خطی با تعدادی شاخه‌های کوتاه است و معمولا از کوپلیمریزاسیون اتیلن با آلکن‌های بلند زنجیر ایجاد می‌شود.
MDPE پلی اتیلن با دانسیته متوسط است

 کاربرد

در تولید لوله‌های پلاستیکی و اتصالات لوله‌کشی معمولا از MDPE استفاده می‌کنند. LLDPE بدلیل بالا بودن میزان انعطاف‌پذیری در تهیه انواع وسایل پلاستیکی انعطاف‌پذیر مانند لوله‌هایی با قابلیت خم شدن کاربرد دارد. اخیرا پژوهش‌های فراوانی در تولید پلی اتیلنهایی با زنجیر بلند و دارای شاخه‌های کوتاه انجام شده است. این پلی اتیلن ها در اصل HDPE با تعدادی شاخه‌های جانبی هستند. اینپلی اتیلن ها ترکیبی ، استحکام HDPE و انعطاف‌پذیری LDPE را دارند.

پلی اتیلن چیست؟ تاریخچه پلی اتیلن – انواع پلی اتیلن و مزایای آنها

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on پلی اتیلن چیست؟ تاریخچه پلی اتیلن – انواع پلی اتیلن و مزایای آنها

پلی اتیلن چیست؟ تاریخچه پلی اتیلن، انواع پلی اتیلن و مزایای آنها

پلی اتیلن یا پلی اتن یکی از ساده‌ترین و ارزانترین پلیمرها است.
پلی اتیلن جامدی مومی و غیر فعال است. این ماده از پلیمریزاسیون اتیلن بدست می‌آید و بطور خلاصه بصورت PE نشان داده می‌شود.
مولکول اتیلن ( C2H4 ) دارای یک بند دو گانه C=C است. در فرایند پلیمریزاسیون باند دو گانه هر یک از مونومرها شکسته شده و بجای آن پیوند ساده‌ای بین اتم‌های کربن مونومرها ایجاد می‌شود و محصول ایجاد شده یک درشت‌مولکول است.

تاریخچه تولید پلی اتیلن
پلی اتیلن اولین بار بطور اتفاقی توسط شیمیدان آلمانی “Hans Von Pechmanv” سنتز شد. او در سال 1898 هنگام حرارت دادن دی آزومتان ، ترکیب مومی شکل سفیدی را سنتز کرد که بعدها پلی اتیلن نام گرفت.
اولین روش سنتز صنعتی پلی اتیلن بطور تصادفی توسط “ازیک ناوست” و “رینولرگیسون” ( از شیمیدان‌های ICI ) در 1933 کشف شد. این دو دانشمند با حرارت دادن مخلوط اتیلن و بنزالدئید در فشار بالا ، ماده‌ای موم‌مانند بدست آوردند. علت این واکنش وجود ناخالصی‌های اکسیژن‌دار در دستگاه‌های مورد استفاده بود که بعنوان ماده آغازگر پلیمریزاسیون عمل کرده بود. در سال 1935 “مایکل پرین” یکی دیگر از دانشمندهای ICI این روش را توسعه داد و تحت فشار بالا پلی اتیلن را سنتز کرد که این روش اساسی برای تولید صنعتی LDPE در سال 1939 شد.

استفاده از انواع کاتالیزورها در سنتز پلی اتیلن
اتفاق مهم در سنتز پلی اتیلن، کشف چندین کاتالیزور جدید بود که پلیمریزاسیون اتیلن را در دما و فشار ملایم‌تری نسبت به روش‌های دیگر امکان‌پذیر می‌کرد.
اولین کاتالیزور کشف شده در این زمینه تری اکسید کروم بود که در 1951 ، “روبرت بانکس” و “جان هوسن” در شرکت فیلیپس تپرولیوم آنرا کشف کردند. در 1953، “کارل زیگلر” شیمیدان آلمانی سیستم‌های کاتالیزور شامل هالیدهای تیتان و ترکیبات آلی آلومینیوم‌دار را توسعه داد. این کاتالیزورها در شرایط ملایم‌تری نسبت به کاتالیزورهای فیلیپس قابل استفاده بودند و همچنین پلی اتیلن یک آرایش (با ساختار منظم) تولید می‌کردند. سومین نوع سیستم کاتالیزوری استفاده از ترکیبات متالوسن بود که در سال 1976 در آلمان توسط “والتر کامینیکی” و “هانس ژوژسین” تولید شد.
کاتالیزورهای زیگلر و متالوسن از لحاظ کارکرد بسیار انعطاف‌پذیر هستند و در فرایند کوپلیمریزاسیون اتیلن با سایر اولفین‌ها که اساس تولید پلیمر های مهمی مثل VLDPE و LLDPE و MDPE هستند، مورد استفاده قرار می‌گیرند.
اخیرا کاتالیزوری از خانواده متالوین‌ها با قابلیت استفاده بالا برای پلیمریزاسیون پلی اتیلن به نام زیرکونوسن دی کلرید ساخته شده است که امکان تولید پلیمر با ساختار بلوری (تک آرایش) بالا را می‌دهد. همچنین نوع دیگری از کاتالیزورها به نام کمپلکس ایمینوفتالات با فلزات گروه ششم مورد توجه قرار گرفته است که کارکرد بالاتری نسبت به متالوسن‌ها نشان می‌دهند.

تاریخچه پلی اتیلن
كلمه پليمر از كلمه يونانى( پلى ) به معناى چند و ( مر ) به معناى واحد و يا قسمت بوجود آمده است . پلیمرها را اشتباها رزين ، الاستومر و پلاستيك نيز مى‌نامند.
در حالى كه پلاستيك تنها يك صفت است كه براى مواردى به كار مى رود كه قابليت تغيير شكل بر اثر فشار را دارا هستند و اغلب اشتباها به عنوان يك كلمه اصلى براى صنایع پلاستیک و توليدات آن به كار مى رود.
اولين بار كلمه پليمر توسط شيمى دانى به نام رنالت در سال 1835، به كار رفت و اولين كاربرد تجارى مواد پليمرى در سال 1834 با كشف كائوچو آغاز شد.
لكن اولين پلاستيك مصنوعى با نام نيترات سلولز در سال 1862 كشف و در سال 1868 وارد بازار شد.
نايلون در سال 1938، پلی اتیلن در سال 1942، پلی پروپیلن در سال 1957،پلى بوتيلن درسال 1974و پليمرهاى كريستال مايع براى ساخت اجزاى الكترونيكى در سال 1985رايج گرديدند.
پليمرها به سه نوع پلیمرهاى طبيعى ، طبيعى اصلاح شده و مصنوعى تقسيم مى شوند.
اولين پلاستيكهاى صنعتى مدرن حدود 100سال پيش رواج يافتند ولى در دهه هاى اخير رشد فزاينده و گوناگونى در صنايع به وقوع پيوست .
حدود 60پليمر بسيار مهم تاكنون به بازار عرضه شده كه مشتقات آنها به بيش از 2000مورد مى رسد و كماكان در حال افزايش است. پلى اولفينها پلیمرهاى گرما نرم با خواص تقريبا مشابه و فرمولاسيون نزديك به هم هستند كه انواع معروف آنها پلی اتیلن ها، پلی پروپیلن ها و پلى بوتيلن ها مى باشند كه در صنايع لوله،كاربرد فراوانترى دارند.

بررسی انواع مختلف پلی اتیلن ها و مزایای هر یک نسبت به دیگری
با يك نگاه به جدول زير متوجه میشويد از نظر انبساط، مقاومت در برابر حلالها، مقاومت كششى، مقاومت فشردگى، و مقاومت حرارتى و نفوذ پذيرى گازى پپلی پروپیلنها امتياز بيشترى نسبت به پلی اتیلنها داشته و به علت مقاومت حرارتى و مقاومت كششى پلى پروپيلنها از پلى بوتيلنها بهتر هستند. اين موارد از جمله مهمترين مواردى هستند كه در صنعت لوله كشى آب سرد گرم مورد نظر مى باشند و باعث امتياز پلى پروپيلن ها مى شوند. البته در اين ميان لوله هاى با تركيب پليمر و آلمينيوم نيز توليد شدند كه به دليل گرانى و اتلاف حرارتى و … به علت وجود فلز در آنها زياد مورد استقبال قرار نگرفت.

پلی پروپیلن ها پلى بوتلين ها پلی اتیلن ها ازنظر
مقاومت شيميايى
بسيارخوب
مقاومت شيميايى
بسيار خوب
مقاومت شيميايى
بسيار خوب
شيميايى
ارزان بدون فن آورى
تا حدى گران با فن آورى
تا حدى گران قيمت ارزان و موجود بودن در
انواع قابل مصرف
هزينه
26 حد اكثر ———————— 50 حد اكثر انبساط حرارتى
مورد حمله مورد حمله مورد حمله اسيدهاى اكسيد كننده
مي شكند لكن تثبيت مي گردد خرد مي شود تثبیت کننده دارد اثر نور خورشيد و اشعه ماوراى بنفش
آرام سريعاً ميسوزد آرام سرعت اشتعال
مقاوم تا
80 درجه سانتيگراد
مقاوم مقاوم تا
60 درجه سانتيگراد
در برابر حلالها
مقاوم مقاوم مقاوم در برابر بازها
31-62 26-30 4-38 مقاومت كششى
38-55 ————————– 19-25 مقاومت فشردگى
0/025-0/25 نمي شكند ( كاملاً ارتجاعى ) 25-1
مانند شلنگ نمي شكند
ضربه پذيرى ايزود
85-110    راك ول 55-65   شر 41-70   راك ول سختى
قابل استفاده در لوله كشى گاز ————————– غير قابل استفاده در خلاء نفوذ پذيرى گازى
110-160 کمتر از 110 80-120 مقاومت حرارتى  (درجه سانتيگراد)

اساس اکسترودر تک مارپیچ

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on اساس اکسترودر تک مارپیچ

اساس اکسترودر تک مارپیچ

اکسترودر تک ماردون (کنترل پنل)

اکسترودر تک ماردون (کنترل پنل)

اکسترودر تک ماردون (سیستم هوا خنک کن)

اکسترودر تک ماردون (سیستم هوا خنک کن)

اکسترودر تک ماردون (درایو)

اکسترودر تک ماردون (درایو)

اکسترودر تک ماردون

اکسترودر تک ماردون

اکسترودر تک ماردون (کنترل پنل)

اکسترودر تک ماردون (کنترل پنل)

مقدمه :

آگاهی از ویِژگی های پلیمر ها و واکنش های آنها و رفتارشان در مراحل گوناگون فرآیند سبب میشود که به طور مؤثر فرآیند اکستروژن ، تجهیزات و مواد بهینه گردد.

دراین مقاله جهت شناسایی فرایند اکستروژن ، به بخش های مختلف اکسترودر تکمارپیچ پرداخته می شود،چرا که همواره دانستن تجهیزات وچگونگی کار با انهاباعث میشود که به صورت بهینه ازسیستم بهره برداری شود .

محصول استاندارد با کیفیت زمانی تولید می شود که اکسترودر در فرآیند اکستروژناهداف زیر رادنبال کند .

دمای صحیح ذوب پلیمر ·

دمای ذوب ثابت و یکسان ·

فشار مذاب صحیح در دای ·

دستیابی محصول همگن با میکس کامل ·

در این شرایط فرایند اکستروژن بهینه می شود .

دستگاه اکسترودر

اکسترودر پیستونی

ساده ترین اکسترودر اکسترودر پیستونی است که در شکل 1 نشان داده شده است . فشار اکسترودر توسط نیرویی که خارج از دای بهپیستون اعمال می گردد فراهم می شود ، اکسترود می کند . گرما با عث ذوب مواد درون بدنه شده و ویسکوزیته را کاهش می دهد  .

ramextrud

با ترکیب صحیح فشار و دما ، محصول اکسترودربا فشار به شکل مورد نظر و طراحی شده از دای خارج می شود . این نوع اکسترودر ها مشکلاتی نیز دارند . اولا اینکه فرایند به صورت ناپیوسته است ، دوماً به دلیل عایق بودن پلاستیک ،زمان طولانی برای گرم کردن یکنواخت مواداز سطح پوسته تا مرکز لازم است و از طرفی در صورتی که دمای پوسته بیش از حد بالا باشد سبب تخریب رزین در دیواره می گردد. همچنین در ااکسترودر پیستونی ،میزان گرمایش برشی ایجادشده از حرکت اکسترودر حداقل است .

اکسترودر تک مارپیچ

اجزاء کلیدی اکسترودرتک مارپیچه در شکل زیر نشان داده شده است . اکسترودرهای تک مارپیچه 5 قسمت اصلی دارند .

  • سیستم محرک
  • سیستم خوراک
  • مارپیچ،پوسته )سیلندر ( و سیستم های گرم کننده
  • مجموعه دای هد
  • سیستم کنترل

single screw

سیستم محرک شامل موتور ، گیربکس ، بلبیرینگ ها و مجموعه یاتاقان است. سیستم خوراک دهی شامل قیف خوراک ، گلوی خوراک و قسمت خوراک مارپیچ است . پس از آن مارپیچ ، سیلندر وسیستم های گرمایش قرار دارند که در آن بخش رزین جامد منتقل شده ، مذاب و مخلوط می شود و به دای پمپ می گردد. محصول اکسترودر پس از انتقال از مارپیچ در آداپتور و دای شکل می گیرد.

اکسترودر ها با توجه به قطر مارپیچ یا سیلندر و نسبت طول به قطر ) L/D (طبقه بندی و فروخته میشوند .

L/D اکسترودر میزان نسبت طول مارپیچ و سیلندر اکسترودر را توصیف میکند .

تعریف L/D شامل طول محوری L به سازنده تجهیزات بستگی دارد . در برخی کارخانه ها طول بخش تغذیه از طول سیلندر می باشند و بعضی ها شامل نمی شوند . میزان عملکرد، مستقیماً به L/Dاکسترود مربوط می شود . دو اکسترودر با قطر یکسان اما L/D های متفاوت ، عملکردو ظرفیت های متفاوتی دارند . اکسترودر طولانی تر ) L/D بیشتر ( توانایی میکس و ذوب بیشتری دارد .

مزایای اکسترودر های با L/D کوچک :

  • · نیاز به مساحت کمتری برای نصب
  • · سرمایه اولیه کمتر
  • · هزینه جابه جایی کمتر برای مارپیچ ها و سیلندر ها
  • · زمان ماندگاری کمتر در اکسترودرها)بویژه وقتی که مواد حساس به دما ،فرآیند می شوند (
  • · مستلزم گشتاور چرخشی )ترک( کمتر
  • · توان کمتر و در نتیجه نیاز به موتور کوچک تر

اکسترودرها با L/D بلندترنیز این مزایا را به دنبال دارند :

  • · دارای خروجی بیشتر
  • · توانایی اختلاط با ظرفیت بیشتر
  • · می توانند در فشار دای بیشتر پمپ شوند .
  • · گنجایش مذاب بیشتر با گرمای برشی کمتر
  • · افزایش جابه جایی حرارت از سیلندر

L/D بعضی اکسترودرها 18:1 ، 20:1 ، 24:1 ، 30:1 ، 36:1 ، 40:1 می باشند .

تغذیه

شامل دو سیستم تغذیه ،که بصورت ثقلی کار می کنند، دو نوع flood و starve هستند . هردوسیستم تغذیه یک قیف مستقیماً روی گلوی تغذیه اکسترودر دارند. قسمت گلوی تغذیه مستقیما به سیلندر اکسترودر متصل شده ، و از جریان آب برای سرد کردن و گرم کردن ان استفاده می کنند .

جریان آب می تواند با یک مقیاس جریان اندازه گیری شود . دمای گلوی تغذیه باید به گونه ای باشدکه در هنگام لمس ، گرما احساس شود اما داغ نباشد .

هدف ازخنک سازی توسط آب ،جلوگیری مواد تغذیه شده از نرم شدن ،چسبناک شدن و به هم چسبیدن در گلوی تغذیه است که باعث ایجاد مانع و مذاب زود رس در قیف تغذیه میشود . یک مانع عایق بین سیلندر و قسمت تغذیه برای به حداقل رساندن انتقال گرما وصل شده است . شکل هندسی قیف و گلوی تغذیه سبب می شود مواد با کمترین محدودیت درون اکسترودر جریان یابد .

p1

در شکل بالا،بخش A طراحی گلوی تغذیه استاندارد برای دانه یا پودر نشان داده است ،. در حالیکه شکل B برای اکسترودر های با خوراک مذاب مناسب تراست .

گلوهای تغذیه شیاردار درتولید فیلم های دمشی و دیگرکاربرد ها برای افزایش خروجی اکسترودر استفاده میشوند . شکل بعد یک بخش تغذیه شیار دار را نشان می دهد .

توجه داشته باشید که شیار ها در ابتدای بخش خوراک دهی و تغذیه در زیر قیف عمیق بوده و تا قبل از ورودی بخش سیلندر نا پدید میشوند.

کانال های خنک سازی اطراف قسمت تغذیه ،گرمای ناشی از اصطکاک تولید شده به وسیله چرخش مارپیچ و تراکم دانه درون کانال های مارپیچ را خنثی نموده واز مذاب زودرس جلوگیری میکند.

در شکل بالا شیارها در جهت محوری هستند اما می توانند به صورت مارپیچی اطراف قسمت تغذیه باشند . مزیت گلوی تغذیه شیاردار این است که اصطکاک بین دانه ها و دیواره سیلندر را افزایش داده و سبب خروجی بیشتر می شود . اکسترودر های دارای بخش تغذیه شیاردار به سه بحث نیازدارند :

  • · خنک سازی گلوی تغذیه برای خنثی نمودن گرمای اصطکاک تولید شده و افزایش فشار دردسترس  (15000 psi plos)  در قسمت شیاردار تغذیه .
  • · یک مانع عایق خوب بین سیلندرو قسمت تغذیه برای به حداقل رساندن انتقال گرما .
  • · مارپیچ های اکسترودر با نسبت تراکم پایین تر برای افزایش سرعت عملکرد .
  • ·مارپیچ ،سیلندر و هیترها

مارپیچ مواد را به جلو انتقال می دهد ، شرایط گرما دادن و ذوب کردن ، همگن سازی و مخلوط کردن مذاب و رساندن مذاب به دای را فراهم می کند . پلیمر در سیلندر به وسیله هیتر هاوباکنترل دقیق دما در نواحی حرارتی ، گرم ومذاب شده ، ضمن این که از تخریب و گرم شدن بیش از اندازه مواد نیزجلوگیری می شود . مارپیچ و سیلندر مواد را به دای هدایت کرده و فشار را در دای ایجاد می کند .

اجزا سیلندر در شکل بالا نشان داده شده است . در هرناحیه حرارتیدر طول سیلندر ، هیترهایی به همراه ترموکوپل آن ها برای کنترل دمای هیتر و سیلندر قرارگرفته اند . هیترها تا حد امکان سیلندر را می پوشانند. در هر ناحیه حرارتی ممکن است 1،1 ،ویا 3 گرمکن)هیتر( و یک ترموکوپل موجود باشد . فرض شود که نزدیکترین هیتر به ترموکوپل بسوزد دو هیتر دیگر باید انرژی مورد نیاز را تأمین می کنند، در این حالت سطح سیلندر نزدیک دو هیتری که کار می کنند داغ تر است.

اگر دورترین نوار هیتر از ترموکوپل بسوزد ،در این حالت پیش بینی می شودسطح سیلندر زیر هیتر سوخته شده سردتر از مساحت جاییکه هیترها به طور صحیح نزدیک ترموکوپل کنترل عمل می کنند باشد .گرمکن های سوخته شده باید در سریعترین زمان ممکن با گرمکن های جدید با ظرفیت یکسان جایگزین شوند.در هر ناحیه حرارتی برای کنترل دمای سیلندر از اب یا هوای سرد استفاده می شود .

سیلندر ها از فولاد کربن یا مواد دیگر ساخته میشوند . پوسته توسط عملیات نیتراته تا عمق حدود 3mm دارای سطح سفت و سخت می باشد. سیلندر های فولادی ضدزنگ با سطح سخت خود، انتخاب بهتری برای اکسترودرهای کوچک هستند.اگر چه سخت کردن فولاد ضدزنگ سبب کاهش مقاومت خورندگی آن می شود وهمچنین فولاد ضد زنگ یک هادی مناسب برای گرما نیست . راه دوم برای بهبود مقاومت سایشی و خورندگی در سیلندراستفاده از پوشش های bimetal است. این پوشش ازنیتراته کردن ضخیم تر است و سبب افزایش مقاومت سایشی می گردد.

جدول بالا بعضی ازپوشش ها و خواص سایشی آنها را نشان می دهد . راه سوم برای بهبود مقاومت خوردگی و سایش استفاده از یک لایه به صورت آستر در سیلندر می باشد که از جنس الیاژ فولادضدزنگ و نیکل و یا از جنس فولاد سخت شده با کربن می باشد .

برای جلوگیری از سایش سطح سیلندرسطح درونی سیلندر باید سخت تر از مارپیچ باشد . معمولا سطح مارپیچ زودتر از سطح سیلندردچارسایش می شود زیرا مساحت سطحی سیلندر به مارپیچ حدود نسبت 10:1 است واین به آن معنی است که پره هایمارپیچ تنها با 11 % دیواره سیلندر طی هر حرکت انتقالی در تماس هستند .

اگرمسیرحرکت سیلندر ، مکان گلوی تغذیه و یاتاقان درست انتخاب شود ، هنگامیکه اکسترودر سرداست مارپیچ به آسانی به بیرون و داخل می لغزد. اگر برای وارد نمودن مارپیچ به سیلندر ویا چرخاندن آن باید آن را گرم کرد بدین معنی است ، که یک جزء درمسیر درست خود قرار نگرفته است. کار با اکسترودی که در مسیر درست نصب نشده است می تواند آسیب های جدی را بوجود آورد.

فشاربالا در سیلندر اکسترودر می تواند خیلی خطرناک باشد . در نتیجه یک دیسک آزاد ( rupture disk) به هد اکسترودر به منظور ایمنی نصب می شود.ممکن است در هر اتفاقی فشار مذاب در سیلندر افزایش یابد بنابراین ، این دیسک عمل کرده و فشار را شکسته و کاهش میدهد . سیلندر ها به طورمعمول با مقاومت فشاری psi 10000 طراحی می شود .

شکل بالا یک دیسک ازاد fike که درون سیلندر اکسترودر می چرخد را نشان می دهد .

سه نوع هیتر برای گرم کردن سیلندر اکسترودر و آداپتور وجود دارند : cast ,cermic,micaاین هیترها باید ماکزیمم مساحت اطراف سیلندر را بپوشانند تا ازایجاد لکه های داغ جلوگیری شده و گرمای یکسانی را فراهم کنند . اکسترودر های بزرگ عموماً هیتر cast دارند و در اکسترودر های کوچکتر از پیوند هیترها استفاده می شود . هیترهای cermic به نسبت هیترهای mica برای دماهای بالاتر طراحی شده اند . هر دو هیتر در رنج دمایی وسیعی کاربرد دارند . خنک کاری سیلندر با آب یا هوا انجام می شود . خنک سازی بهتربه وسیله آب بهترو با انتقال حرارت بیشتری نسبت به هواانجام شده وهمچنین کنترل دما نیز راحت تر است . مسیرهای آب می توانند کثیف و مسدودشوند . جریان اب باید اندازه گیری شود بنابراین این سیستم باید درست کار کند . سیستم آب گردان به عملکرد آب وابسته است .مزیتی که آب دارد این است که هوای گرم را به داخل واردنمی کند .اگر سیستم خنک کاری آب درست اندازه گیری شود در کاهش گرمای سطح اکسترودر خیلی مؤثر میباشد و میتواند عملکردخوبی داشته باشد.

در شکل بالاسیستم های خنک کاری برای سیستم های گردش آب و هوا نشان داده شده است . فاصله گذارهای شیاردار اطراف سیلندر در سیستم air-cooled )خنک سازی بوسیله هوا(مساحت سطحی اضافی برای بیرون راندن گرما فراهم کرده و بازده خنک سازیرا افزایش می دهد . سیستم های air-cooled یک فن برای جریان هوا دارندو ماکزیمم بازده را برای فرآیندهای مختلف فراهم می کنند.

اکسترودرهای تک مارپیچه سه قسمت متفاوت دارند که در شکل بالا نشان داده شده است.

قسمت های مختلف مارپیچ :

قسمت تغذیه

در این قسمت برای انتقال پودر و دانه از گلوی تغذیه به سمت اکسترودر از پره های عمیق استفادهمیشود .

قسمت انتقال در این قسمت به تدریج ازعمق پره ها کم شده تا دانه های نسبتامذاب راانتقال دهند. رزین ها درقسمت انتقال طی فرآیند مذاب متراکم می شود .

قسمت سنجش

آخرین قسمت مارپیچ است که کم عمق ترین پره ها را دارد .

Recent Comments

    Back to Top

    2024 © همه حقوق این وبسایت برای شرکت آسترونکست محفوظ میباشد