Posted by roueen in اکسترودرها on June 22, 2015 with Comments Off on خط توليد پروفيل upvc|خط توليد پانل upvc|خط توليد ديوارپوش pvc|خط توليد پنل سقف کاذب|خط توليد تايل سقفي|خط توليد پروفيل درب و پنجره upvc
براي اين منظور استفاده از اکسترودهاي دو ماردون مخروطي شکل(Conical) و يا استفاده از اکسترودرهاي دوماردون موازي (Parallel) براي توليد با ظرفيتهاي بالا و با استفاده ازگيربکسهاي گشتاور بالا و طراحي خاص ماردون متداول مي باشد.
قطعات استفاده شده در اين نوع خطوط توليد از برترين برندهاي جهان از قبيل Siemens ‘ ABB‘ Schneider Electric و غيره مي باشد.
با استفاده از قالبهاي مناسب ‘ با طراحي دقيق با کيفيت و سرعت بالا و خطوط اکستروژن و کو-اکستروژن امکان توليد انواع پروفيلهاي درب و پنجره 3 کاناله‘ 4 کاناله ‘ 5 کاناله و يا پروفيل داراي قسمتهاي لاستيکي از قبيل زهوارها (کو اکسترود شده) ‘ توليد پروفيل با لايه رنگي( اکرليک ASA) و طرح دار (embossed) با کيفيت عالي مقدور مي باشد.
براي توليد يک پروفيل upvc با کيفيت بالا 4 مرحله را به ترتيب مي توان نام برد :
1- انتخاب مواد اصلي تشکيل دهنده :
دانش انتخاب مواد لازم براي ترکيب با پلي وينل کلرايد براي به دست آوردن محصولي با کيفيت.
2- ترکيب کردن مواد : که شامل سنجش ، اندازه گيري وترکيب همه مواد براي توليد مخلوطي يک دست و هموژن است.
3- فرايند اکستروژن وشکل دهي : توليد يک محصول کاربردي از يک فرايند که شامل نرم کردن پودر ترکيب شده ، شکل دهي اين پلاستيک به وسيله غالب هاي مخصوص ، خنک کردن شکل نهايي توسط قالب هاي کاليبره شده و حمام هاي آب سرد و ميز هاي کاليبراسيون است .
4- طراحي : استفاده از تکنولوژي ي اکستروژن وساخت براي پنجره در مدل هاي گوناگون.
انتخاب مواد اصلي تشکيل دهنده:
پروفيل شامل مواد تشکيل دهنده مختلفي است .در حدود 85 در صد ماده تشکيل دهنده اصلي پلي وينل کلرايد است .پلي وينل کلرايد مورد استفاده براي توليد پروفيل عموما ازنوع سوسپانسيون(65-68)است که در حالت خاص آن پارامتر هايي مانند دوام ومقاومت در برابر شرايط جوي که از فاکتور هاي ضروري براي پروفيل در و پنجره است را دارا نمي باشد.
مشخصات و مزاياي اجزا ترکيبي :
1- پايدار کننده حرارتي
جلوگيري از تخريب ترکيب در حين فرايند اکستروژن
کاهش اثر نور خورشيد بر روي فريم وقاب که باعث تخريب مي شود
2- اصلاح کننده ضربه
افزايش خواص چقرمگي به pvc که ذاتا شکننده است
جلوگيري ازشکستن در حين توليد ، شکل دهي و کاربر نهايي
3- پر کننده
افزايش خواص مکانيکي (چقر مگي و مقاومت ضربه)
کاهش قيمت حصول
کاهش اثر نور uv بر روي پروفيل
جلوگيري از تغيير رنگ وتخريب توسط نورuv
5- دي اکسيد تيتانيوم
مشارکت در ايجاد رنگ سفيد در پروفيل وانعکاس نورخورشيد
جلوگيري از تمرکز حرارت بر روي سطح پروفيل
6- روان کننده
خثي کردن نيرو هاي اصطکاکي بين پروفيل وغالب که باعث خرابي غالب و کدر شدن محصول مي شود
پايدارماندن سطح صاف فريم وقاب
7- کمک فرايند
ممانعت از تغيير کيفيت ناخواسته درحين توليد
8- پيگمنت
ايجاد رنگ هاي خاص در پروفيل
ايجاد تنوع در محصول
پايدار کننده هاي حرارتي :
اگر استابلايزر حرارتي وجود نداشته باشد،pvc در تماس با دماي بالا و حرارت زياد اکسترودر دومارپيچه حتما خواهد سوخت و حالتي زوغالي به خود خواهد گرفت.با استفاده از مقادير کافي پايدار کننده مناسب از تخريب ترکيب مي توان جلوگيري کرد که اين امر تضمين مي کند که خواص کاربردي ترکيب به وسيله تغيرات گرمايي شديد در حين نرم شدن متاثر نخواهد گشت.
مواد اصلاح کننده ضربه:
پايدار کننده هاي UV:
نور فرابنفش (uv) يک جزءطبيعي از نور خورشيد است .اين طول موج از نور سوختگي وايجاد تومر سياه رنگ در اعماق پوست (نوعي از سرطان) مي شود همچنين اين اشعه ها باعث تغيير رنگ و از بين رفتن آن در پارچه ها والياف که در وسايل منزل استفاده مي شود وساير وسايل خانه و ساختمان مي شود.اين اشعه ها همچنين باعث تغيير رنگ مواد تشکيل دهنده پروفيل درو پنجره م شود .براي به مينيممرساندن اثر نور خورشيد بايد از پايدار کننده هاي نور uv در فرماليسيون استفاده کرد که اين مواد از تغيير رنگ محصول در برابر نور خورشيد براي مدت طولاني جلوگيري خواهد کرد .سيستم پنجره که در آن از پايدار کننده هاي نور uv استفاده نشده باشد يک تغيير رنگ فاحش در مدت زمان کوتاهي که در معرض نورآفتاب قرارمي گيرد را شاهد خواهيم بود .پنجره هاي سفيد کدر مي شوند که گاهي زرد ويا حتي قهوه اي سوخته نيز به نظر خواهند رسيد.پروفيل هاي که به قهوه اي سوخته نيز به نظر درآمده اند يک سطح کدر را نشان خواهند داد ودر حقيقت تابش نور بر روي چنين سطحي بسيار ناخوشايند وبدنما خواهد بود.به علت قيمت بالاي اين جزء ترکيب بسياري از توليد کنندگان از آن استفاده نمي کنند..در فرمولاسيون هاي ارائه شده از اين جزئ بين phr0-0.3 گزارش شده است .
دي اکسيد تيتانيوم:
دي اکسيد تيتانيوم يک ترکيب معمول شميايي است که در بسياري از محصولات که رنگ سفيد براق مورد استفاده مي شود .به علت اضافه شدن Tio2 به محصول رنگ پروفيل سفيد خواهد بود.جدا از جنبه شناسايي Tio2 نقش مهمي درکارکرد نهايي وعملي پنجره دارد.به علت رنگ براق آن اشعه هاي خورشيد را منعکس مي کند ومانع از تمرکز حرارت ناخواسته بر روي سطح خارجي و داخل وخارج ها مي شود.تجمع حرارتي پيوستگي ساختار پنجره را کاهش مي دهد و باعث تخريب آن مي شود .با اين وجود مقدار مورد استفاده با توجه به شرايط اقليمي تعيين مي شود ومقدار زياد آن تغييرات ناخواسته زيادي را به وجود مي آورد .فرمولاسيون هاي متفاوت مقدار phr3-9 رابراي دي اکسدتيتانيوم پيشنهاد داده اند.استفاده از مقادير مختلف دي اکسيد تيتانيوم مي تواند شدت سفيدي متفاوتي ايجاد کند.
روان کننده ها:
روان کننده ها به عنوان کاهش دهنده اصطکاک بين سطح فلزي اکستروژن ، قالب ، کاليبراتور وپليمر به کار مي رود.اين جزء جريان صاف وپيوسته را بدون چسبندگي به سطوح فلزي را مهيا مي سازد که باعث ايجاد يک سطح فلزي صاف و غير کدر در محصول نهايي مي شود.روان کننده ها به دو دسته روان کننده خارجي (کاهش اصطکاک وسطوح فلزي )و روان کننده داخلي (کاهش اصطکاک درون پليمر به منظور کاهش ويستکوزيته در حين فرايند)تقسيم مي شود.پارفين ها و واکسهاي پلي اتيلني از جمله اين روان کننده ها هستد.بر طبق نسخه هاي ذکر شده مقدارphr1.2-0.1 استفاده از روان کننده ها به عنوان مقدار بهينه توصيه شده است.
کمک فرايند ها:
اين جزء باعث بهبود خواص ذوب مي گردد و مورفولوژي مذاب ترکيب مورد تاثير قرار خواهد داد(براي مثال پايداري ترکيب زماني که به حالت پلاستيک تغيير مي کند.)مقدار مناسب اين جزء براي اطمينان از اين که ذوب پلاستيک و خنک شدن در يک سرعت يکسان است ضروري است زيرا باعث همگن شدن وبهبود استحکام مذاب مي شود.بدون استفاده از کمک فرايند يک ناپيوستگي در کيفيت يا در حين کاربرد بوجود مي آيد .استفاده ازآن باعث افزايش شفافيت و براقيت پروفيل نيز مي گردد.مقدارمور نياز کمک فرايند در فورمالاسيون بين phr1.5-0.5 است.
پر کننده:
در pvc سخت استفاده از پر کننده محدود به افزايش چقرمگي که بوسيله قرار گرفتن ذرات در داخل زنجيره ها ي پليمري است مي شود وکاهش قيمت در درجه بعدي قرار دارد.کربنات کلسيم پوشش داده شده با اندازه ذرات کوچکتراز 100 نانومتر کاملا مطلوب تشخيص داده است.پوشش دادن کربنات خيس شدن آن توسط پليمر را افزايش مي دهد که اين باعث ايجاد چسبندگي بهتر و در نتيجه پيوستگي بيشتر مذاب و در نهايت خواص بالاتري خواهد بود.استفاده از کربنات بر روي براقيت محصول نهايي نيز تاثير گذار خواهد بود بدين ترتيب که کربنات با اندازه ريزتر براقيت بيشتري ايجاد مي کند.استفاده از مقدارphr4-10 کربنات کلسيم در فرمالاسيون ها توصيه گشته است.در نهايت بايد ذکر کرد که نوع pvc مورد استفاده، نوع خام،آن بود که سابقه نداشته باشد، به عبارتي از پودر پلي وينيل کلرايد خام استفاده مي شود.توليد کنندگاني که از پروفيل بازيافتي که آنرا بسيار ريز کرده اند براي توليد محصول استفاده مي کننداين ريسک را مي پذيرند که محصولي با کيفيت پايين که پايداري ، استحکام ، مقاومت در برابرشرايط جوي وسطحي ناهموار دارد را توليد کنند.
فرايند توليد پروفيل UPVC شامل دو مرحله اصلي مي باشد:
1- مرحله ميکس و آماده سازي مواد اوليه در دستگاه ميکسر
2- مرحله شکل دهي و توليد پروفيل در دستگاه اکسترودر
در مرحله اول PVC و افزودني هاي ديگر ، با درصد مشخص توسط دستگاه ميکسر ترکيب سرد و گرم مي شود . مواد ترکيب شده بين 12 تا 24 ساعت در دماي محيط مي ماند تا الکتريسيته ساکن حاصل از ميکس از بين برود و دماي آن با دماي محيط يکسان گردد.
مواد پس از مرحله ميکس به صورت اتوماتيک وارد دستگاههاي اکسترودر ميشود .پس از تنظيم و نصب قالب پروفيل مورد نياز و هم چنين قسمت هاي کاليبراتور و تانک هاي خنک کننده ميبايست دماي سيلندر و دستگاه اکسترودر و قالب به حد معين برسد. اين ميزان دما بسته به نوع سطح مقطع پروفيل متفاوت است که معمولا براي سيلندر بين 165 تا 185 درجه سانتيگراد و براي قالب بين 198 و 202 درجه سانتي گراد ميتواند متغير باشد.
سبكي وزن، خمش پذيري، عدم اشتعال، عايق بودن در مقابل حرارت و الكتريسيته، مقاومت در برابر مواد شيميايي و بيولوژيک، قابليت تبديل به سطوح سيقلي، قابليت تلفيق با مواد افزودني مختلف و بالاخره انعطاف پذيري در به كاربردن طرح هاي متعدد، UPVC را به يک نوع ترموپلاست مدرن که مناسب ترين جايگزين براي آلياژهاي فلزي و غير فلزي در صنعت در و پنجره سازي است تبديل نموده است.
فرمولاسيون توليد پروفيل درب و پنجره UPVC
در فرآيند توليد UPVC جهت افزايش کيفيت محصول، مواد افزودني خاصي به پودر PVC افزوده مي شود.
اصلي ترين ماده مورد نياز جهت توليد پروفيل هاي يو پي وي سي , (PolyVinil Choloride ) يا PVC با K-Value حدود ??مي باشد . پي وي سي يا پلي وينيل کلرايد يکي از قديميترين و پر مصرف ترين انواع پليمرها در جهان است که از پليمريزاسيون مونومر وينيل کلرايد (VCM) بدست ميآيد و تقريبا ??% از ترکيب پروفيلهاي UPVC را تشکيل مي دهد.
پي وي سي ترکيبي از مشتقات نفت خام و گاز کلر مي باشد که طي فرآيند پليمريزاسيون توليد مي شود. در فرآيند پليمريزاسيون پيوند دوگانه بين کربن- کربن شکسته ميشود و از اتصال مونومرهاي وينيل کلرايد به يکديگر پليمر پي وي سي تشکيل ميگردد.
اين ماده در دو نوع امولسيون و سوسپانسون توليد مي گردد که نوع سوسپانسيون، به دو گروه سخت و نرم تقسيم مي شود. نوع سخت داراي K- Value يا شاخص وزن ملکولي 67 – 65 و نوع نرم آن بين 71 – 68 است.
پي وي سي نوع سخت به دليل ميزان کم جذب مواد نرم کننده (DOP) به نوع Unplastisized معروف است .
منظور از UPVC همان پلي وينيل کلرايد غير پلاستيک شده است Normal 0 false false false EN-US X-NONE FA يعني
Unplasticized Poly Vinyl Chloride
اين ماده خواص فيزيکي متفاوتي را نسيت به پي وي سي دارا مي باشد.
در فرآيند توليد UPVC براي بالا بردن کيفيت محصول نهايي مواد افزودني خاصي به پودر پي وي سي (پلي وينيل کلرايد) افزوده مي شود که باعث ايجاد خواص جامد در آن مي شود اين افزودني ها از قرار زيرند :
1- ضربه گيرها (Impact Modifier)
ضربه گيرها يا مقاومت دهنده ها باعث ايجاد خواص مکانيکي در محصول مي گردند و مقاومت يو پي وي سي را در برابر ضربه و چکش خاري افزايش داده و باعث افزايش انعطاف پذيري آن مي گردند.
2- تثبيت کننده ها يا مواد ضد احتراق (Heat Stabilizers)
ثبات دهنده يا Stabilizer باعث ايجاد مقاومت در برابر حرارت در پروسه توليد (اکستروژن) و همچنين مقاومت محصول نهايي در برابر حرارت محيط مي گردد . تثبيت کننده هاي حرارتي مقاومت پروفيل را در مقابل حرارت افزايش داده باعث جلوگيري از آسيب ديدن درب وپنجره ها در مجاورت هواي آزاد وحرارت حاصل از تابش خورشيد مي گردند. تثبيت کننده هاي رنگي از تعقييرات رنگ وخراب شدن پروفيل در مقابل اشعه ماورا بنفش UV جلوگيري مي کند.
3- پر کننده ها (Fillers)
فيلرها نيز بمنظور افزايش خواص مکانيکي و همچنين کاهش قيمت تمام شده محصول استفاده مي شوند. کربنات کلسيم (CaCO3) يکي از رايج ترين فيلرهاي قابل استفاده در اين صنعت مي باشد که دانه بندي و همچنين پوشش دار بودن (Coated) آن بايد رعايت شود.معادن کربنات کلسيم به وفور در ايران وجود دارد و شرکت هاي مختلف در استخراج و دانه بندي آن فعاليت مي کنند البته اندازه دانه بندي شرکت هاي ايراني به دقت دانه بندي شرکت هاي خارجي نمي باشد و عموما مش بندي ها واقعي نمي باشند .
فيلرها مقاومت ، الاستيسيته ، چروکيدگي وساير خواص محصول نهايي را تحت تاثير قرارميدهند .
4- کمک کننده ها (Processiny Aids)
کمک فرايندها بمنظور تسهيل در ذوب وشکل دهي مواد بکار ميروند .
5- روان کننده هاي داخلي و خارجي (Internal & External Lubricants)
روانسازها يا Lubricants جهت کمک به جريان مواد در قالب حين عمليات اکستروژن و همچين جهت ايجاد سطح صيقلي وشفاف در پروفيل توليد شده بکار برده مي شود .
6- رنگ هاي صنعتي (Pigment)
رنگ دانه ها جزئي از ترکيب محصول هستند که باعث ايجاد تنوع در مصول نهايي مي شوند . رنگ دانه دي اکسيد تيتانيوم (TiO2) باعث ايجاد مقاومت در برابر رنگ پريدگي در اثر اشعه UV خورشيد مي گردد و نقش مهمي را در پروفيلهاي يوپي وي سي ايجاد مي کند . دي اکسيد تيتانيوم علاوه بر باز تابش اشعه ماوراي بنفش باعث تنظيم شفافيت رنگ پروفيل نيز مي گردد.
به ترموپلاست جديد بوجود آمده که ترکيب جديدي از ماده اوليه PVC است ؛ به علت خواص فيزيکي متفاوت اصطلاحا يک ماده غير پلاستيک اطلاق مي شود.
عدم وجود هر يک ازافزودني ها و يا تغيير ميزان بکار رفته در فرمولاسيون , مي تواند خواص محصول نهايي توليد شده را بشدت تحت تاثير قراردهد.
شکل فيزيکي پي وي سي به صورت پودر سفيد بوده و نوع دانه بندي آن بسته به روش پليمريزاسيون متفاوت است.
درجه پليمريزاسيون پي وي سي بسته به مدت زمان فرايند آن تغيير ميکند و هر چه زمان پليمريزاسيون بيشتر شود، طول زنجيرهاي پليمر بلندتر ميگردد. براي نمايش درجه پليمريزاسيون از شاخصي به نام K-Value استفاده ميگردد که رابطه اين شاخص با درجه پليمريزاسيون به شرح جدول زير است:
PVC Degree of Polymerization
K-Value DP
50 ± 500 53
50 ± 700 57
50 ± 730 58
50 ± 800 60
50 ± 1000 65
50 ± 1050 67
50 ± 1250 70
پليمريزاسيون PVC :
روشهاي زيادي براي پليمريزاسيون PVC وجود دارند که دو روش اصلي آن عبارتند از:
1- پليمريزاسيون سوسپانسيوني :Suspension Polymerization
2 -پليمريزاسيون امولسيوني :Emulsion Polymerization
در هر دو روش فوق، از فرايند نيمه مداوم استفاده ميشود که طي آن رآکتورها با منومر VCM، مواد افزودني، کاتاليست و آب تغذيه مي شوند. فرايند پليمريزاسيون در محيط آبي صورت ميگيرد.
اختلاف بين اين دو روش در سايز و خواص دانههاي حاصله ميباشد بنابرين روش توليد بر اساس کابرد نهايي انتخاب ميشود.
در انتهاي واکنش رآکتورها تخليه ميشوند و مخلوط آب و PVC از منومر جدا ميشوند. سپس توسط عمليات سانتريفوژ آب را از PVCجدا کرده و آنرا خشک، دانه بندي و بستهبندي ميکنند.
با ترکيب PVC مناسب با افزودنيهاي ديگر، طي فرايند اکستروژن پروفيلهاي UPVC توليد مي گردند .
سبکي وزن، خمش پذيري، عدم اشتعال، عايق بودن در مقابل حرارت و الکتريسيته ، مقاومت در برابر مواد شيميايي و بيولوژيک، قابليت تبديل به سطوح سيقلي، قابليت تلفيق با مواد افزودني مختلف و بالاخره انعطاف پذيري در به کاربردن طرح هاي متعدد، پليمر مزبور را به يک نوع ترموپلاست مدرن که مناسب ترين جايگزين براي آلياژهاي فلزي و غير فلزي در صنعت در و پنجره سازي است تبديل نموده است .
Posted by roueen in اکسترودر تک مارپیچ on June 19, 2015 with Comments Off on گيربکس – کاربرد گيربکس – گيربکس چیست ؟
تعريف گيربکس : گيربکس ماشيني است که براي انتقال توان مکانيکي از يک منبع توليد توان به يک مصرف کننده و هچنين برآورده ساختن گشتاور و سرعت دوراني مورد نياز مصرف کننده به کار مي رود. گيربکس درواقع يک واسطه بين منبع توان و مصرف کننده توان مي باشد که بين منبع توان و مصرف کننده توان يک انعطاف پذيري بر قرار ميکند.
به دليل هماهنگ بودن گشتاور و سرعت دوراني منبع توليد توان با مصرف کننده نياز به ماشيني که بتواند اين هماهنگي را به صورت يک واسطه برقرار کند امري ضروري به نظر مي رسد دستگاهي که اين خواسته را ميتواند تامين کند گيربکس نام دارد.
منبع توليد توان مهم نيست که با چه نوع سوخت يا منابع انرژي توان را توليد ميکند بلکه اين مهم است که در شفت ورودي به گيربکس توان توليد شده را به صورت گشتاور به گيربکس منتقل کند دستگاههايي که ميتوانند توان مورد نياز گيربکس را تامين کنند شامل:
مصرف کننده ميتواند هر نوع ماشيني باشد فقط کافي است که مصرف کننده بتواند توان خروجي از گيربکس را بصورت گشتاور دريافت کند. به عنوان مثال ميتوان به موارد زير اشاره کرد:
در دستگاه هايي که براي آ نها تنوع سرعت اهميت ندارد بلکه افزايش سرعت و کاهش گشتاور يا کاهش سرعت و افزايش گشتاور اهميت دارد از گيربکسی که بتواند اين کاهش يا افزايش گشتاور را در يک مرحله يا چند مرحله انجام دهد استفاده مي کنيم اين نوع ازگيربکس ها ، گيربکس تک سرعته نام دارند مثلا گيربکسی که در بعضي از انواع آسانسوربه کار ميرود.
در بعضي از ماشين آلات و دستگاههايي که در حين کار نياز به افزايش يا کاهش سرعت دوراني داريم نياز به تنوع سرعت نيز داريم مثلا خودروها وقتي از سر بالايي ميخواهند بالا روند بيشتر به گشتاور بالاتر نياز دارند تا سرعت بيشتر تا بتوانند از سر بالايي بالا روند و وقتي که در اتوبان ها حرکت ميکنند بيشتر نياز به سرعت بيشتر دارند تا گشتاور بالا لذا براي تامين اين تنوع سرعت و گشتاور ازگيربکسی که بتواند اين تنوع را برآورده سازد استفاده مي شود. به اين نوع از گيربکس ها که مي توانند اين تنوع سرعت و گشتاور مورد نياز را براورده سازند گيربکس چند سرعته گفته مي شود. کاربرد گيربکس در زندگي انسان از زمان اختراع چرخ و قرقره تا به امروز که به اوج شکوفايي صنعتي رسيده بسيار مهم و جزو لاينفک صنعت مي باشد.
Posted by roueen in مواد اولیه on June 19, 2015 with Comments Off on انواع پلیمرها
انواع پلیمرها : پلیمرهـای طبیعی نظیرخانواده سلولزی ها ( پنبه ، کتان ، کاغذ ، چوب و ……… ) ، پروتئین ها ( پشم ، ابریشم ، چرم و ………..
پلی سیلیکات ها تقسیم می شوند .
پلیمرهای مصنوعی ساخت دست بشر که اکثریت مطلق مواد پلیمری را تشکیل می دهند ( پلاستیک ها ، لاستیک ها ، چسب ها ، رنگ ها ، فوم ها ، کامپوزیت ها ) پلیمرهای بازیابی شده که منشاء طبیعی داشته و برخی عوامل روی آن استخلاف شده اند نظیر نیترات سلولز ،
پلاستیک: پلاستیک ها موادی هستند مصنوعی ، که از ملکول های بزرگ و سنگین تشکیل شده اند و می توان آنها را تحت فشار و حرارت قالب گیری نمود,,خصوصیت دیگر پلاستیک این است که برخلاف لاستیکها در برابر نیروی وارده مقاومت نشان می دهد. .
لاستیک: یک لاستیک در مقابل نیروی کم تغییر شکل زیادی داده و حداقل تا ۳۰۰% طول آن در دمای محیط افزایش می یابد و زمانی که تنش قطع می گردد به حالت اولیه خود بر می گردد.
کامپوزیت: موادی هستند که از دو سازندة کاملاً متفاوت از نظر خوّاص مکانیکی ، همچنین با درصدهای وزنی بالا تشکیل شده اند که در نهایت موجب بهبود و ارتقاء خواص محصول می شوند .
هدف از ساخت یک کامپوزیت تقویت فاز ضعیف ( مثل پلی استر ) و تبدیل آن به یک مادة مرکب مستحکم (مانند فایبرگلاس) با استفاده از یک تقویت کننده مکانیکی ( الیاف شیشه ) است .
رنگ: موادی پوشش دهنده هستند که نقش تزئین و حفاظت از سطح قطعه را بعهده دارند.
پوشش های آلی عموماً از اختلاط چهار جزء مهم رزین، رنگدانه، حلاّل و مواد افزودنی بدست می آیند.
در صنعت رنگ سازی اساس کار پخش رنگدانه در رزین می باشد، ذرات رنگدانه بایستی به صورت یکنواخت در محیط پخش شوند.
پایة اصلی پوشش آلی را رزین تشکیل می دهد، انتخاب نوع پوشش از روی نوع رزین انجام می پذیرد. رزین وظایف عمده ای را بعهده دارد، ایجاد فیلم روی سطح مورد نظر از وظایف اصلی رزین است، رزین بوسیلة این خاصیت قادر خواهد بود سطح زیرین را از محیط اطراف جدا کند.
معمولاً رزین به صورت مایع روی سطح پهن شده و با انجام یک یا چند واکنش پلیمریزاسیون جامد می شود. با اینکه رزین مایع خود ساختمان پلیمری دارد ولی سطح پلیمریزه شده و جرم ملکولی آن بالاتر می رود.
مهمترین رزین ها عبارتند از :
رزین های پلی استر ، رزین های پلی اتر ، رزین های پلی اورتان ، رزین های پلی وینیلی ، رزین های اکریلیک .
رنگدانه ها :
ذرّات جامدی هستند که برای بوجود آوردن خصوصیات معینی در رنگ پراکنده می شوند.
این خصوصیات عبارتند از : رنگ ظاهری ، پوشانندگی ، دوام ، استحکام مکانیکی و محافظت از سطوح فلزی در برابر خوردگی.
چسب:
فوم:موادی جامد هستند که توسط یک گاز منبسط شده و حاوی تعداد بسیار زیادی حفره ( Cell) با شکل و اندازه یکسان می باشند .
فوم های پلیمری را به صور مختلف طبقه بندی می کنند ، یکی از مهمترین این دسته بندی ها بر مبنای دمای عبور شیشه ای (Tg 1 ) استوار گشته است :
الف : فوم های نرم و انعطاف پذیر ب : فوم های سخت
از خصوصیت مهم فومها عایق صدا و الکتریسیته بودن و ضربه وهمچنین سبکی زیاد آن است.
الیاف:در صنعت نساجی استفاده می شوند.از نظر خصوصیت مکانیکی بر خلاف لاستیکها در برابر نیرو طولش افزوده نمی گردد و قابلیت بلوری شدن هم دارد.
پلی اتیلن
پرمصرفترین پلاستیک دنیا
پلی اتیلن پرمصرفترین پلیمر در دنیا از دسته ترموپلاستیک ها و متعلق به خانواده پلی اولفین هاست و نمایان گر بزرگترین گروه از ضایعات پلاستیکی می باشد.این پلیمر کاربرد فروانی در صنعت بسته بندی دارد.برای مثال کیسه ها و دبه ها, بطری های شیر, قاشقهای پلاستیکی در آشپزخانه را می توان نام برد.خواص PE به طور گسترده ای به درجه شاخه ای بودن زنجیر آن بستگی دارد.
نحوه تولید گریدهای اصلی پلی اتیلن
PE در دو شکل اصلی به نام های پلی اتیلن با چگالی بالا(HDPE) و پلی اتیلن با چگالی پایین (LDPE) موجود می باشد.این پلیمر از طریق پلیمریزاسیون رادیکالی اتیلن تولید میشود. برای رسیدن به جرم مولکولی بالا به دلیل تبخیر بالای مونومر ͵واکنش را در فشار بالا (atm 1500-1300) و دمای بالا ( C° ۳۰۰-۸۰) نگه میدارند. در این شرایط سخت پلیمر حاصله یک پلیمر با درجه بالایی از زنجیرهای شاخه ای کوتاه و بلند است که کریستالیتی را تا حدود ۵۰% محدود میکند و سبب یک گستره ذوب نسبتا پهن میگردد.HDPE با استفاده از کاتالیست فیلیپس و یا زیگلر_ناتا تولید میشود و و این پلیمر خطی تر و درجه کریستالیتی بالاتری از LDPE دارد.
پلی پروپیلن PP
پلی پروپیلن (PP) دومین ترموپلاستیک پرمصرف از خانواده پلی اولفین هاست. در مقایسه با PE با چگالی کم و زیاد ͵PPدارای استحکام ضربه ای کمتر ولی دمای کاربری بالاتر و استحکام کششی بیشتر است .پلی پروپیلن یک از پلیمرهای با کارآیی متنوع است که در تولید قطعات مختلف پلاستیکی͵ صنعت خودرو (تزئینات داخلی͵ پروانه ها) و هم چنین در صنعت الیاف (جمن های مصنوعی طناب ضد پوسیدگی) کاربرد دارد.
تولیدPP:
پلی پروپیلن عمدتا توسط فرآیند پلیمریزاسیونی که نظم فضایی در آن مهم است͵برای به دست آوردن ساختار زنجیره ای با نظم بالاتر تولید میشود. تجاری ترین و مهم ترین نوع PP͵PPایزوتاکتیکاست.این پلیمر در دمای پایین و با استفاده از کاتالیزور زیگلر_ناتا تولید میشود. در این روش ۹۰% پلیمر حاصله به فرم ایزوتاکتیک و به همراه واحدهای تکرار شونده با آرایش سر به دم است .روش های تولید گوناگونی از جمله پلیمرزاسیون حلالی به وسیله فرآیند حلالی و پلیمرزاسیون فاز گاز مورد استفاده است. در ساختار PP ایزوتاکتیک واحدهای مونومری با گروه های متیلی با آرایش سر به دم متصل شده و همگی در یک طرف زنجیر اصلی قرار دارند با استفاده از کاتالیست های متالوسن جدید تولید گونه های مختلف PP از جمله : ایزوتاکتیک ͵سیندیوتاکتیک͵ اتاکتیک و نیمه_ایزواتاکتیک میسر میشود.ساختار نیمه_ایزواتکتیک ساختاری است که در آن هر گروه متیل دیگری در جایگاه ایزو تاکتیت قرار میگیرد و گروه های متیلی باقی مانده به صورت تصادفی جایگیری میکنند .
Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on لوله پلی اتیلن جهت مصارف گازرسانی
لوله پلی اتیلن جهت مصارف گازرسانی
لوله و اتصالات پلی اتیلن برای مصارف گازرسانی باعث کاهش هزینه و زمان اجرای پروژه های گازرسانی در سطح کشور شده است.
آغاز استفاده از لولههاي پلاستيکي تحت فشار، از اوايل سال 1950 ميلادي بوده است. از جمله کاربريهاي اين لولهها، انتقال آب، مواد شيميايي، سيالات خنک کننده و گرم کننده، گازها، هواي فشرده و سيستمهاي آتش نشانی، چه در روي زمين و چه در زير زمين است.يکي از اولين موارد کاربرد پلي اتیلن (با دانسيته متوسط) در زمينه انتقال گاز بوده است كه از سال 1960 ميلادي مورد استفاده قرار گرفته است. در حال حاضر بيش از 90% خطوط انتقال گاز ايالات متحده و کانادا از مواد پلاستیکی است که 99% آن نيز از جنس پلي اتیلن است. لوله های پلي اتیلن در شبکه هاي انتقال گاز نه تنها در آمريکاي شمالي، بلکه در سرتاسر جهان استفاده ميشوند.
مزاياي استفاده از لوله های پلي اتیلن گازي :
1- قابلیت اتصال آسان
لوله پلي اتیلن قادر به اتصال جوشي است, به طوري که اتصالات به وجود آمده نه تنها به استحکام خود لوله هستند، بلکه در برخي موارد از خود لوله نيز مستحکمتر ميباشند. از آنجاييکه عمده نقطه ضعف خطوط تحت فشار محل اتصالات است، ميتوان نتيجه گرفت که اتصالات پلي اتیلن در مقايسه با ساير مواد از استحکام مناسبتري برخوردارند.
2- قابلیت انعطاف
لوله پلي اتیلن تا حدود 25 برابر قطر لوله قابل خم شدن است. اين مسأله باعث ميشود در بسياري از موارد براي تغيير زاويه خط لوله نيازي به استفاده از اتصالات نباشد.از سوي ديگر انعطاف پذيري پلي اتيلن استفاده از آن را در مناطق زلزله خيز توجيه پذيرتر ميکند.
3- مزایای نصب
روشهاي نصب بي نظيري که به خاطر انعطاف پذيري و اتصالات بدون نشتي لوله های پلي اتیلنی قابل استفادهاند، استفاده از اين لولهها را در مقايسه با لولههاي فولادي از نظر اقتصادي و فني توجيه پذير ميکند و باعث ميشوند مقدار زيادي در هزينه و زمان صرفه جويي شود.
4- مقاومت در مقابل خوردگي و اثر مواد شيميايي:
لوله پلي اتیلن از مقاومت شيميايي بسيار خوبي برخوردارند و در مقابل ترکيبات فعال گاز و ساير ترکيبات شيميايي بسيار مقاوم ميباشند.
5- عمر طولاني، دوام و کاهش هزينه ها:
عمر کاري لوله های پلي اتیلن بين 50 تا 100 سال برآورد ميشود و اين به معناي کاهش هزينههاي جايگزيني براي طولاني مدت است.از سوي ديگر هزينه كارگزاري ، نصب و نگهداري اين محصول نسبت به ساير محصولات بسيار توجيه پذير و پايين ميباشد.
استانداردها و آزمونها
آزمونهايي که در کنترل کيفي لولههاي مورد استفاده در انتقال گاز انجام مي شوند، به سه گروه تقسيم ميشوند:
1- آزمونهاي بعد از توليد (BRT):به آزمونهايي مي گويند که قبل از ترخيص هر دسته از توليدات روي آنها انجام مي شود تا از کيفيت توليد اطمينان حاصل شود.
2- آزمونهاي تأييد فرايند (PVT):به آزمونهايي اطلاق مي شود که جهت بررسي کيفيت و پيوستگي خط توليد در فواصل زماني خاص بر روي مواد، اجزا و يا مجموعه انجام ميشود.
3- آزمونهاي نوعي (TT):به آزمونهايي ميگويند که براي اثبات احراز تأييديههاي مورد نظر استاندارد در مورد مواد، اجزا و توانايي مجموعه انجام ميشود.
Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on خط تولید لوله های پلی پروپیلن – پلی پروپیلن چیست؟
پلی پروپیلن بواسطه پلیمریزه شدن پروپیلن بوجود آمده است و در مقایسه با دیگر مواد پلاستیکی جدیدا کشف گردیده است. پلی پروپیلن توسط فونتانا در سال 1950 اختراع شده و با یک ساختار نامنظم با وزن مولکولی زیاد مشخص می گردد. پروپیلن موفقیت زیادی در صنعت داشته و ساخته تک آرایشی پلی پروپیلن می باشد که توسط جیولیو ناتا در سال 1954 اختراع شد. پلی پروپیلن در زمان ترتیب یافتن رادیکالهای متیلی در یک طرف زنجیره ، تک آرایشی می باشد. در سال 1957 ، تولید پلی پروپیلن تحت نام تجاری ” موپلن ” ( MOPLEN ) توسط مونتدیسون آغاز گردید. بعد از آن ، تولید و تجارت آن محصول توسط دیگر شرکت های اروپایی ، آمریکایی و ژاپنی شروع شد.
پلی پروپیلن ( PP ) یکی از چندین مشتقات پروپیلن ( CH3-CH=CH2 ) است. پلیمرها ، بسته به نوع پلیمریزه شدن و کاتالیزور مورد استفاده ، ترکیبی منظم و یا نامنظم را از خود نشان می دهند. وقتی اتمهای پلیمرها ترکیب منظمی مثل پلی پروپیلن تک آرایشی داشته باشند ، پلیمرها براحتی به کریستال ( بلور ) تبدیل می گردند. زمانیکه ترتیب نداشته باشند به کریستال تبدیل نمی شوند. در واقع ،پروپیلن، بسته به ترتیب مولکولهای بزرگ خود ، انواع مختلف با کاربردهای گوناگون دارند. ویژگیهای آنها تحت تاثیر ساختار آنها بر زنجیره مولکولی و وزن مولکولی آنها می باشند. پلیمرهای ساختار منظم ( PP تک آرایشی و هم آرایشی ) می توانند کریستالی شده ، در دماهای بالا ذوب نشده و ویژگیهای مکانیکی خوبی از خود نشان دهند. به عبارت دیگر ،پلی پروپیلن های بی آرایش ( ترکیب نامنظم اتم ها ) کریستالی نشده و خصوصیات ارتجاعی دارند که دارای مصارف عملی نمی باشند. در مصارف صنعتی ، فقط پلیمرهای تک آرایشی استفاده می شوند و دیگر گونه ها برای مصرف تجاری تولید نمی گردند.پلی پروپیلن یک پلاستیک قابل انعطاف بوده که براحتی شکل گرفته و می تواند قالب ریزی شود. نام پلاستیک گرمایی برای آن بدلیل شکل گیری و قالب ریزی راحت آن بر اثر حرارت می باشد. پلی پروپیلن با حرارت به پلاستیک تبدیل شده ، و وقتی سرد شود ، جامد می گردد. این خصوصیت آن ، امکان تولید ذرات از طریق تزریق ، روزن رانی و شکل گیری خلائی را برای آن میسر می سازد.
این ماده با پلیمریزه شدن پلی پروپیلن بدست می آید.
این ماده از پلیمریزه شدن مقادیر خاص پروپیلن و اتیلن بدست می آید. بدلیل قرارگیری در حالتی میان مولکولهای پروپیلن و اتیلن در زنجیره پلیمری بصورت دسته ای، این ماده دارای ویژگی میان پلی اتیلن و پلی پروپیلن می باشد.
این ماده از پلیمریزه شدن مقادیر خاص پروپیلن و اتیلن بدست آمده و مولکولها بی نظم و ترتیب شکل می گیرند .
Posted by roueen in اکستروژن پلاستیک on June 18, 2015 with Comments Off on اکسترودر -خط تولید لوله های پلی اتیلن – پلی اتیلن چیست ؟
پلی اتیلن یا پلی اتن یکی از سادهترین و ارزانترین پلیمرها است. پلی اتیلن جامدی مومی و غیر فعال است. این ماده از پلیمریزاسیون اتیلن بدست میآید و بطور خلاصه بصورت PE نشان داده میشود. مولکول اتیلن دارای یک بند دو گانه C=C است. در فرایند پلیمریزاسیون بند دو گانه هر یک از مونومرها شکسته شده و بجای آن پیوند سادهای بین اتمهای کربن مونومرها ایجاد میشود و محصول ایجاد شده یک درشتمولکول است.
پلی اتیلن اولین بار بطور اتفاقی توسط شیمیدان آلمانی “Hans Von Pechmanv” سنتز شد. او در سال 1898 هنگام حرارت دادن دی آزومتان ، ترکیب مومی شکل سفیدی را سنتز کرد که بعدها پلی اتیلن نام گرفت. اولین روش سنتز صنعتی پلی اتیلن بطور تصادفی توسط “ازیک ناوست” و “رینولرگیسون” ( از شیمیدانهای ICI ) در 1933 کشف شد. این دو دانشمند با حرارت دادن مخلوط اتیلن و بنزالدئید در فشار بالا ، مادهای موممانند بدست آوردند.علت این واکنش وجود ناخالصیهای اکسیژندار در دستگاههای مورد استفاده بود که بعنوان ماده آغازگر پلیمریزاسیون عمل کرده بود. در سال 1935 “مایکل پرین” یکی دیگر از دانشمندهای ICI این روش را توسعه داد و تحت فشار بالا پلی اتیلن را سنتز کرد که این روش اساسی برای تولید صنعتی LDPE در سال 1939 شد.
اتفاق مهم در سنتز پلی اتیلن ، کشف چندین کاتالیزور جدید بود که پلیمریزاسیون اتیلن را در دما و فشار ملایمتری نسبت به روشهای دیگر امکانپذیر میکرد. اولین کاتالیزور کشف شده در این زمینه تری اکسید کروم بود که در 1951 ، “روبرت بانکس” و “جان هوسن” در شرکت فیلیپس تپرولیوم آنرا کشف کردند. در 1953 ، “کارل زیگلر” شیمیدان آلمانی سیستمهای کاتالیزور شامل هالیدهای تیتان و ترکیبات آلی آلومینیومدار را توسعه داد.این کاتالیزورها در شرایط ملایمتری نسبت به کاتالیزورهای فیلیپس قابل استفاده بودند و همچنین پلی اتیلن یک آرایش (با ساختار منظم) تولید میکردند. سومین نوع سیستم کاتالیزوری استفاده از ترکیبات متالوسن بود که در سال 1976 در آلمان توسط “والتر کامینیکی” و “هانس ژوژسین” تولید شد. کاتالیزورهای زیگلر و متالوسن از لحاظ کارکرد بسیار انعطافپذیر هستند و در فرایند کوپلیمریزاسیون اتیلن با سایر اولفینها که اساس تولید پلیمرهای مهمی مثل VLDPE و LLDPE و MDPE هستند، مورد استفاده قرار میگیرند.اخیرا کاتالیزوری از خانواده متالوینها با قابلیت استفاده بالا برای پلیمریزاسیون پلی اتیلن به نام زیرکونوسن دی کلرید ساخته شده است که امکان تولید پلیمر با ساختار بلوری (تک آرایش) بالا را میدهد. همچنین نوع دیگری از کاتالیزورها به نام کمپلکس ایمینوفتالات با فلزات گروه ششم مورد توجه قرار گرفته است که کارکرد بالاتری نسبت به متالوسنها نشان میدهند.
طبقهبندی پلی اتیلن ها بر اساس دانسیته آنها صورت میگیرد که در مقدار دانسیته اندازه زنجیر پلیمری و نوع و تعداد شاخههای موجود در زنجیر دخالت دارد.
این پلی اتیلن دارای زنجیر پلیمری بدون شاخه است بنابراین نیروی بین مولکولی در زنجیرها بالا و استحکام کششی آن بیشتر از بقیه پلی اتیلنها است. شرایط واکنش و نوع کاتالیزور مورد استفاده در تولید پلی اتیلن HDPE موثر است. برای تولید پلی اتیلن بدون شاخه معمولا از روش پلیمریزاسیون با کاتالیزور زیگلر- ناتا استفاده میشود.
این پلی اتیلن دارای زنجیری شاخهدار است بنابراین زنجیرهای LDPE نمیتوانند بخوبی با یکدیگر پیوند برقرار کنند و دارای نیروی بین مولکولی ضعیف و استحکام کششی کمتری است. این نوع پلی اتیلن معمولا با روش پلیمریزاسیون رادیکالی تولید میشود. از خصوصیات این پلیمر ، انعطافپذیری و امکان تجزیه بوسیله میکروارگانیسمها است.
این پلی اتیلن یک پلیمر خطی با تعدادی شاخههای کوتاه است و معمولا از کوپلیمریزاسیون اتیلن با آلکنهای بلند زنجیر ایجاد میشود.
MDPE پلی اتیلن با دانسیته متوسط است
در تولید لولههای پلاستیکی و اتصالات لولهکشی معمولا از MDPE استفاده میکنند. LLDPE بدلیل بالا بودن میزان انعطافپذیری در تهیه انواع وسایل پلاستیکی انعطافپذیر مانند لولههایی با قابلیت خم شدن کاربرد دارد. اخیرا پژوهشهای فراوانی در تولید پلی اتیلنهایی با زنجیر بلند و دارای شاخههای کوتاه انجام شده است. این پلی اتیلن ها در اصل HDPE با تعدادی شاخههای جانبی هستند. اینپلی اتیلن ها ترکیبی ، استحکام HDPE و انعطافپذیری LDPE را دارند.
Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on الياف پلي پروپيلن چيست و چگونه توليد مي شود
الياف پلي پروپيلن که از طريق پليمريزاسيون پروپيلن به صورت يک پليمر خطي تهيه مي گردند و به اختصار پ-پ ناميده مي شوند بعد از پيدا شدن کاتاليست زيگلرناتا توليد شدند اين کاتا ليست توليد پلي پروپيلن ايزو تاکتيک که قادر به متبلور شدن مي باشد را امکان پذير ساخت .
اين الياف در سال 1960در ايتاليا با نام تجاري مراکلون به صورت صنعتي توليد شده وبه بازار عرضه گرديدند . خصوصيات پروپيلن باعث رشد سريع آن در سطح بين المللي گرديد وبعد از مدتي نسبتاً کوتاه ،پلي پروپيلن توانست از نظر مقدار توليد ، چهارمين مقام را بعد از پلي استر ، نايلون وآکريليک کسب نمايد .
عدم امکان رنگررزي الياف پروپيلن به روشهاي متداول براي ديگر الياف ، باعث جلو گيري از رشد بيشتر اين ليف مصنوعي گرديده است.
الياف و نخ هاي نواري که دو کاربرد پلي پروپيلن را تشکيل مي دهند نسبتاً به آساني به روش ذوب ريسي تهيه مي گردند و آسان بودن توليد اين نوع الياف و پائين بودن هزينه توليد استقبال بسيار گستردهاي از آن را به همراه داشته است . با بکار گيري مواد بالا برنده مقاومت در مقابل اشعه ماوراء بنفش سعي شده است عيب کم بودن مقاومت پلي پروپيلن در مقابل اين اشعه مرتفع گردد.
پلي پروپيلنداراي دماي ذوب بالا تر (175-165درجه سانتيگراد)در مقايسه با پلي اتیلن مي باشد . از نقطه نظر استحکام ومقاومت در مقابل سايش ،پلي پروپيلن با پلي اتیلن تفاوت زياد ندارد .
همانطور که گفته شد پلي پروپيلن هم مثل پلي اتیلن با روش هاي معمول قابل رنگرزي نبوده و به روش رنگرز ي توده که در آن قبل از تشکيل الياف ، به پليمر مذاب اضافه مي شود رنگرزي مي گردد.
لازم به ذکراست که الياف الفيني اصلاح شده به روش شيميايي که قادر به رنگرزي شدن با روشهاي معمولي مي باشند توليد شده اند .
به عنوان مثال پلي پروپيلن حاوي پلي ونيل پيريدين به صورت پخش شده ويا ونيل پيريدين که جزئي ماکرو مولکول را تشکيل مي دهد با رنگينه هاي اسيدي قابل رنگرزي است و به هر حال قيمت تمام شده اين نوع الياف باعث گرديده است که از رنگرزي توده به عنوان مهم ترين روش براي رنگرزي اين نوع الياف استفاده گردد.
توليد الياف پلي پروپيلن
ماده اوليه توليد الياف پلي پروپيلن را پروپيلن(3CH2=CHCH)تشکيل مي دهد که به صورت يک توليد جانبي در توليد اتيلن به روش شکستن مولکول نفت درصنعت پتروشيمي شکل مي گيرد .گازهاي مابع حاوي پروپيلن ، ديگر ماده اين منبع را تشکيل مي دهند .
پلي پروپيلن از پليمريزاسيون پروپيلن در شرايط دما و فشار نسبتاً ملايم ودر حضور کاتاليست معروف زيگلر – ناتا انجام مي شود . وجود اين کاتاليست ، پليمري به صورت ايزوتاکتيک را تشکيل مي دهد که قادر به متبلور شدن تا حدود 90 درصد مي باشد .
ديگر فرمهاي آتاکتيک وسيندو تاکتيک پلي پروپيلن دارا ي خواص مناسب جهت تشکيل الياف نمي باشند . با توجه به شرايط سرد شدن ، ساختار بلورين پلي پروپيلن دو شکل متفاوت پيدا ميکند . چنانچه پلي پروپيلن مذاب سريعاً سرد گردد ، ساختار بلورين پايدار که پاراکريستالين و ياسمکتيک نام دارد شکل مي گيرد .
چنانچه پلي پروپيلن مذاب به آرامي سرد گردد . ساختار بلورين معروف به منوکلينيک بوجود مي آيد.حرارت دادن پلي پروپيلن ازنوع پاراکريستالين به بيش از 80 درجه سانتيگراد باعث تغيير ساختار بلورين آن به شگل منوکلينيک مي گردد
در الياف پلي الفيني ،پيوندهاي شيميايي ويوني بين ماکرو مولکول هاي پلي پروپيلن وجود نداشته ونيرو هاي بين زنجيره اي به نيرو هاي واندروالس محدودمي گردند . ازاين رو براي کسب خواص فيزيکي مناسب با وزن مولکولي الياف پلي الفيني در مقايسه با الياف ديگر بالاتر انتخاب گردد.
با توجه به سرعت توليد و دماي پليمر مذاب ، سرعت سرد شدن وکشش بعد از توليد ، الياف پلي پروپيلن ازنظر جهت گيري بلورهاي خود نسبت به محور ليف با يکديگر تفاوت دارند و افزايش سرعت ريسندگي اوليه واعمال کشش بعد از توليد ، جهت گيري بلورها رادر جهت محور ليف افزايش مي دهد.
پليمريزاسيون پروپيلن به سه روش امکان پذير مي باشد . در روش تعليق که يک روش کلاسيک بحساب مي آيد پروپيلن در يک محيط رقيق کننده که معمولاً يک هيدرو کربن آليفاتيک مي باشد پليمريزه مي گردد مکمل اين روش ، پليمريزاسيون فاز گاز مي باشند.
شدر ذوب ريسي پلي پروپيلن ، مشابه ديگر الياف ترموپلاستيک مثل پلي استر وپلي اميد ، وزن مولکولي متوسط ، توزيع وزن مولکولي و همچنين شاخص جريان توده پليمري مذاب (MFI) وخصوصيات الياف توليد شده را تحت تأثير خود قرار مي دهند . بطور کلي افزايش وزن مولکولي پليمر ، افزايش استحکام الياف توليد شده را به همراه دارد.
براي الياف پلي پروپيلن که به منظور مصرف در صنعت نساجي توليد مي گردندوزن مولکولي متوسط و براي الياف پلي پروپيلن با استحکام زياد که به عنوان الياف با کارايي بالا توليد مي کردند وزن مولکولي بالا انتخاب مي گردد .
باتوجه به مربوط بودن شاخص جريان مذاب و وزن مولکولي متوسط به يکديگر ، شاخص جريان مذاب مناسب درتوليد الياف نساجي 25-15 گرم بر10 دقيقه وبراي الياف باکارايي بالا 5-3 گرم بر10 دقيقه ذکرشده است
آزمايشات نشان داده است که محدوده کوچکتر توزيع وزن مولکولي پليمر ، به قابليت ريسندگي اوليه بهتر ، کمک مي نمايد . باتوجه به بالابودن وزن مولکولي پلي پروپيلن که افزايش ويسکوزيته توده مذاب در ريسندگي اوليه آنرا به همراه دارد ، دماي پلي پروپيلن مذاب درريسندگي اوليه آنها70 تا120درجه بيش از دماي پليمربوده ودرمحدوده 230 تا 280 درجه سانتيگراد انتخاب مي گردد . شکل زير ذوب ريسي رابه صورت شماتيک نشان مي دهد
دراين روش پليمربه صورت گرانول از تغذيه کننده (هاپر) وارد مارپيچي ذوب کننده شده بر اثر گرمايش توسط مارپيچي ذوب مي گردد
. پليمر مذاب سپس به کمک پمپ تغذيه از طريق ***** به رشته ساز تغذيه شده وپس از خروج از روزنه هاي رشته ساز تحت تاثير نيروي کششي قرار مي گيرد و با از دست دادن گرما به محيط خود جامد گرديده وسر انجام روي بسته اي پيچيده شده ويا آنکه به صورت مداوم به بخشي ديگر از خط توليد نهايي تغذيه مي گردد .
از آنجايي که پلي پروپيلن داراي گرماي ويژه بالا (KJ/Kg-K2-6/1) وضريب هدايتي کم (J/m.s.k3/0-1/0) مي باشد ، لذا طول منطقه سرد کننده بعد از رشته ساز در مقايسه با اليافي مثل نايلون ويا پلي استر ، بايد طويل تر انتخاب گردد . به همين ترتيب سرعت هاي توليد بالاتر به منطقه سرد کننده طويل تري احتياج دارند . از اين رو ، طول ستون ريسندگي ممکن است به 10متر برسد .
با توجه به پائين بودن دماي ترانزيسيون ثانويه الياف الفيني از دماي اطاق ، تبلور الياف نه تنها در سرد شدن در ستون ريسندگي اوليه شکل مي گيرد بلکه اين فرآيند ممکن است بعداً هم روي بوبين ادامه پيدا مي کند بنابراين شرايط انجماد در ستون ريسندگي و همچنين شرايط نگهداري بوبين پس از توليد ، تبلور الياف الفيني را تحت تأثير خود قرار مي دهند تعداد روزنه هاي رشته سازهاي توليد کننده نخهاي فيلامنتي ممکن است با توجه فيلامنت هاي مورد احتياج بين 150- 10 متغير ميباشد رشته سازهايي که براي توليد الياف به منظور بريده شدن و مورد استفاده قرار گرفتن به صورت کوتاه ( استيپل) به کار گرفته ميشوند ممکن است تا 20000 روزنه داشته باشند
با توجه به سرعت توليد ، الياف توليد شده ممکن است تا 6 برابر طول اوليه خود کشيده شوند تا خواص مکانيکي مطلوب را بدست آورند . درجه کشش قابل کسب براي پلي پروپيلن پاراکريستالين بيشتر از پلي پروپيلن منو کلينيک مي باشد واين تفارت به مکانيک تغيير شکل مختلف براي ساختار منو کلينيک پاراکريستالين ربط داده شده است .
پديده هاي فيزيکي مهم در ذوب ريسي را مي توان به صورت زير خلاصه نمود:
-رفتار توده مذاب از نقطه نظر رئولوژي
-کاهش قطر جريان در روزنه رشته ساز
-سرمايش جريان
-تبلور وتشکيل ساختار ليف
با اعمال کشش به الياف بعد از ريسندگي اوليه ، نظم داخلي آنها افزايش يافته وتبلور بيشتري شکل مي گيرد . با توجه به دماي تبديل شيشه اي پائين اين نوع الياف ، کشش آنها با سرعت کم به مقدار 3تا8 برابر بدون گرمايش امکان پذير است.
کشش الياف بدون گرمايش به کشش سرد معروف است.براي افزايش سرعت کشش ،الياف پلي پروپيلن حرارت داده مي شوند .کشش همراه با گرمايش به کشش گرم معروف است.ساختار جديد بعد از کشش ، معمولاً با سرد نمودن الياف پايدار مي گردد.
الياف پلي پروپيلن با توجه به قيمت ارزانتر انها نسبت به الياف ديگر براي طيف گسترده اي از کاربرد ها مورد استفاده قرار گرفته اند .به عنوان مثال ،نخ کفپوش هاي از نوع تافتينگ،نخ خامه قالي ، الياف کفپوشهاي نمدي ،کاربردهاي نساحي الياف پلي پروپيلن را تشکيل مي دهند.کاربردهاي صنعتي پلي پروپيلن را طناب، منسوجات کشاورزي و***** ، منسوجات عمراني (کاربرد در عمران)گوني ،توري وموارد ديگري تشکيل مي دهند . براي کاربردهاي صنعتي هم از الياف پلي اتیلن استفاده مي شود
سبک بودن پلي اتیلن و پلي پروپيلن از آب وهمچنين عدم جذب آب توسط اين الياف ودر نتيحه عدم تغيير در خواص مکانيکي انها بر اثر تماس با رطوبت از خصوصيات بارز اين دو نوع ليف در مقايسه با الياف ديگر است.
الياف الفيني علاوه بر داشتن نهايت خاصيت آبگريزي ،در مقابل تعداد زيادي از اسيدهاي غير آلي ، بازها وحلال هاي آلي در دماي اطاق مقاوم باشند . اين خواص تا حدودي به وزن مولکولي بسيار بالاي اين الياف مربوط مي گردد. سولفوريک ونيتريک اسيد وهمچنين ديگر اسيدهاي قوي در دماهاي بالا قادر به تخريب پلي الفين ها مي باشند.پلي پروپيلن معمولي که به بازار عرضه مي گردد داراي مقدار زيادي مواد افزودني مي باشد .نمونه هايي از اين مواد که به منظور امکان پذير ساختن تولید پلي پروپيلن به ان اضافه مي گردند به قرار زير است :
ضد اسيد
مواد ضد اسيد مثل کلسيم ويا سديم استئارت نقش خنثي سازي بقاياي کاتاليست مورد استفاده قرار گرفته در مرحله پليمريزاسيون را به عهده دارند.در غير اينصورت امکان تشکيل اسيد وجود دارد که مي تواند مشکلاتي مثل اثر سوء بر دستگاههاي تبديل را به همراه داشته باشد.
ضد اکسيداسيون
مواد ضد اکسيداسيون به عنوان محافظت از پليمر در مقابل شکسته شدن ماکرومولکول در حين توليد و بعد از آن مورد استفاده قرار مي گيرند.فنل با ممانعت فضايي نمونه اي از مواد ضد دي اکسيداسيون (آنتي اکسيدان )مي باشد . لازم به ذکر است که عليرغم به همراه داشتن اين مواد افزودني ،پلي پروپيلن به عنوان اصلاح شده در نظر گرفته نمي شود.
عليرغم مزاياي چشمگير ، الياف پلي پروپيلن داراي سه مشکل عمده در رابطه با کاربرد خود بصورت زير مي باشند :
الف : دماي ذوب نسبتاً پائين:
تفاوت زياد بين دماي ذوب الياف پلي پروپيلن و ديگر الياف مثل پلي استر و پلي آميد ، کاربرد وسيعتر پلي پروپيلن را محدود ساخته است .
ب : تخريب بر اثر اکسيداسيون
وجود پيوند C-H نوع سوم د رپلي پروپيلن تخريب آنرا بر اثر اکسيداسيون شدت مي بخشد . گرما ونور به عنوان يک کاتاليست براي واکنش اکسيداسيون عمل مي نمايد . از اين رو ، مقاومت کم الياف پلي پروپيلن معمولي در مقابل نور و گرما ، عيب بزرگي براي آنها بشمار مي آيد . جذب اکسيژن توسط اين پليمر ، باعث شکستن ماکرومولکول و در نتيجه کاهش درجه پليمريزاسيون بر اثر تشکيل هيدروپراکسيدها در دماي بالا مي باشد . به همين علت ، در پليمريزاسيون آن از مواد ضد اکسيد کننده استفاده مي شود.
از نقطه نظر تخريب بر اثر گرما ، پلي پروپيلن به علت دارا بودن کربن نوع سوم در معرض خطر بيشتر نسبت به پلي اتيلن قرار دارد . نور خورشيد هم از طريق مکانيزم فتواکسيداسيون با اثري مشابه گرما باعث تخريب پلي الفين ها مي گردد . بخش ماوراي بنفش نور خورشيد نقش عمده اي در تخريب به عهده دارد . الياف ظريف سريعتر از الياف ضخيم تحت تأثير نور خورشيد قرار مي گيرند .
ج : عدم امکان رنگرزي با روشها متداول براي ديگر الياف
همان طور که قبلاً گفته شد با توجه با عدم وجود گروههاي قطبي در پلي پروپيلن ، اين ليف بدون اصلاح شدن قادر به قبول تعداد زيادي از رنگينه هاي مختلف نبوده و رنگرزي نوع معمولي آن امروزه به کمک رنگرزي توده انجام مي شود .
براي کاهش کمبودهاي پلي پروپيلن سعي شده است که اين نوع ليف ترموپلاستيک با توجه به هدف خاص اصلاح گردد . اين اصلاح ممکن است که خواص ديگري را نيز تحت تأثير خود قرار دهد . اصلاحات براي بهبود و حتي کسب خصوصيات ديگر ممکن است از طريق اصلاح شيميايي پليمر و يا اصلاح فيزيکي در مرحله توليد و يا بعد از آن انجام شود.
Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on اساس اکسترودر تک مارپیچ
اساس اکسترودر تک مارپیچ
مقدمه :
آگاهی از ویِژگی های پلیمر ها و واکنش های آنها و رفتارشان در مراحل گوناگون فرآیند سبب میشود که به طور مؤثر فرآیند اکستروژن ، تجهیزات و مواد بهینه گردد.
دراین مقاله جهت شناسایی فرایند اکستروژن ، به بخش های مختلف اکسترودر تکمارپیچ پرداخته می شود،چرا که همواره دانستن تجهیزات وچگونگی کار با انهاباعث میشود که به صورت بهینه ازسیستم بهره برداری شود .
محصول استاندارد با کیفیت زمانی تولید می شود که اکسترودر در فرآیند اکستروژناهداف زیر رادنبال کند .
دمای صحیح ذوب پلیمر ·
دمای ذوب ثابت و یکسان ·
فشار مذاب صحیح در دای ·
دستیابی محصول همگن با میکس کامل ·
در این شرایط فرایند اکستروژن بهینه می شود .
دستگاه اکسترودر
اکسترودر پیستونی
ساده ترین اکسترودر اکسترودر پیستونی است که در شکل 1 نشان داده شده است . فشار اکسترودر توسط نیرویی که خارج از دای بهپیستون اعمال می گردد فراهم می شود ، اکسترود می کند . گرما با عث ذوب مواد درون بدنه شده و ویسکوزیته را کاهش می دهد .
با ترکیب صحیح فشار و دما ، محصول اکسترودربا فشار به شکل مورد نظر و طراحی شده از دای خارج می شود . این نوع اکسترودر ها مشکلاتی نیز دارند . اولا اینکه فرایند به صورت ناپیوسته است ، دوماً به دلیل عایق بودن پلاستیک ،زمان طولانی برای گرم کردن یکنواخت مواداز سطح پوسته تا مرکز لازم است و از طرفی در صورتی که دمای پوسته بیش از حد بالا باشد سبب تخریب رزین در دیواره می گردد. همچنین در ااکسترودر پیستونی ،میزان گرمایش برشی ایجادشده از حرکت اکسترودر حداقل است .
اکسترودر تک مارپیچ
اجزاء کلیدی اکسترودرتک مارپیچه در شکل زیر نشان داده شده است . اکسترودرهای تک مارپیچه 5 قسمت اصلی دارند .
سیستم محرک شامل موتور ، گیربکس ، بلبیرینگ ها و مجموعه یاتاقان است. سیستم خوراک دهی شامل قیف خوراک ، گلوی خوراک و قسمت خوراک مارپیچ است . پس از آن مارپیچ ، سیلندر وسیستم های گرمایش قرار دارند که در آن بخش رزین جامد منتقل شده ، مذاب و مخلوط می شود و به دای پمپ می گردد. محصول اکسترودر پس از انتقال از مارپیچ در آداپتور و دای شکل می گیرد.
اکسترودر ها با توجه به قطر مارپیچ یا سیلندر و نسبت طول به قطر ) L/D (طبقه بندی و فروخته میشوند .
L/D اکسترودر میزان نسبت طول مارپیچ و سیلندر اکسترودر را توصیف میکند .
تعریف L/D شامل طول محوری L به سازنده تجهیزات بستگی دارد . در برخی کارخانه ها طول بخش تغذیه از طول سیلندر می باشند و بعضی ها شامل نمی شوند . میزان عملکرد، مستقیماً به L/Dاکسترود مربوط می شود . دو اکسترودر با قطر یکسان اما L/D های متفاوت ، عملکردو ظرفیت های متفاوتی دارند . اکسترودر طولانی تر ) L/D بیشتر ( توانایی میکس و ذوب بیشتری دارد .
مزایای اکسترودر های با L/D کوچک :
اکسترودرها با L/D بلندترنیز این مزایا را به دنبال دارند :
L/D بعضی اکسترودرها 18:1 ، 20:1 ، 24:1 ، 30:1 ، 36:1 ، 40:1 می باشند .
تغذیه
شامل دو سیستم تغذیه ،که بصورت ثقلی کار می کنند، دو نوع flood و starve هستند . هردوسیستم تغذیه یک قیف مستقیماً روی گلوی تغذیه اکسترودر دارند. قسمت گلوی تغذیه مستقیما به سیلندر اکسترودر متصل شده ، و از جریان آب برای سرد کردن و گرم کردن ان استفاده می کنند .
جریان آب می تواند با یک مقیاس جریان اندازه گیری شود . دمای گلوی تغذیه باید به گونه ای باشدکه در هنگام لمس ، گرما احساس شود اما داغ نباشد .
هدف ازخنک سازی توسط آب ،جلوگیری مواد تغذیه شده از نرم شدن ،چسبناک شدن و به هم چسبیدن در گلوی تغذیه است که باعث ایجاد مانع و مذاب زود رس در قیف تغذیه میشود . یک مانع عایق بین سیلندر و قسمت تغذیه برای به حداقل رساندن انتقال گرما وصل شده است . شکل هندسی قیف و گلوی تغذیه سبب می شود مواد با کمترین محدودیت درون اکسترودر جریان یابد .
در شکل بالا،بخش A طراحی گلوی تغذیه استاندارد برای دانه یا پودر نشان داده است ،. در حالیکه شکل B برای اکسترودر های با خوراک مذاب مناسب تراست .
گلوهای تغذیه شیاردار درتولید فیلم های دمشی و دیگرکاربرد ها برای افزایش خروجی اکسترودر استفاده میشوند . شکل بعد یک بخش تغذیه شیار دار را نشان می دهد .
توجه داشته باشید که شیار ها در ابتدای بخش خوراک دهی و تغذیه در زیر قیف عمیق بوده و تا قبل از ورودی بخش سیلندر نا پدید میشوند.
کانال های خنک سازی اطراف قسمت تغذیه ،گرمای ناشی از اصطکاک تولید شده به وسیله چرخش مارپیچ و تراکم دانه درون کانال های مارپیچ را خنثی نموده واز مذاب زودرس جلوگیری میکند.
در شکل بالا شیارها در جهت محوری هستند اما می توانند به صورت مارپیچی اطراف قسمت تغذیه باشند . مزیت گلوی تغذیه شیاردار این است که اصطکاک بین دانه ها و دیواره سیلندر را افزایش داده و سبب خروجی بیشتر می شود . اکسترودر های دارای بخش تغذیه شیاردار به سه بحث نیازدارند :
مارپیچ مواد را به جلو انتقال می دهد ، شرایط گرما دادن و ذوب کردن ، همگن سازی و مخلوط کردن مذاب و رساندن مذاب به دای را فراهم می کند . پلیمر در سیلندر به وسیله هیتر هاوباکنترل دقیق دما در نواحی حرارتی ، گرم ومذاب شده ، ضمن این که از تخریب و گرم شدن بیش از اندازه مواد نیزجلوگیری می شود . مارپیچ و سیلندر مواد را به دای هدایت کرده و فشار را در دای ایجاد می کند .
اجزا سیلندر در شکل بالا نشان داده شده است . در هرناحیه حرارتیدر طول سیلندر ، هیترهایی به همراه ترموکوپل آن ها برای کنترل دمای هیتر و سیلندر قرارگرفته اند . هیترها تا حد امکان سیلندر را می پوشانند. در هر ناحیه حرارتی ممکن است 1،1 ،ویا 3 گرمکن)هیتر( و یک ترموکوپل موجود باشد . فرض شود که نزدیکترین هیتر به ترموکوپل بسوزد دو هیتر دیگر باید انرژی مورد نیاز را تأمین می کنند، در این حالت سطح سیلندر نزدیک دو هیتری که کار می کنند داغ تر است.
اگر دورترین نوار هیتر از ترموکوپل بسوزد ،در این حالت پیش بینی می شودسطح سیلندر زیر هیتر سوخته شده سردتر از مساحت جاییکه هیترها به طور صحیح نزدیک ترموکوپل کنترل عمل می کنند باشد .گرمکن های سوخته شده باید در سریعترین زمان ممکن با گرمکن های جدید با ظرفیت یکسان جایگزین شوند.در هر ناحیه حرارتی برای کنترل دمای سیلندر از اب یا هوای سرد استفاده می شود .
سیلندر ها از فولاد کربن یا مواد دیگر ساخته میشوند . پوسته توسط عملیات نیتراته تا عمق حدود 3mm دارای سطح سفت و سخت می باشد. سیلندر های فولادی ضدزنگ با سطح سخت خود، انتخاب بهتری برای اکسترودرهای کوچک هستند.اگر چه سخت کردن فولاد ضدزنگ سبب کاهش مقاومت خورندگی آن می شود وهمچنین فولاد ضد زنگ یک هادی مناسب برای گرما نیست . راه دوم برای بهبود مقاومت سایشی و خورندگی در سیلندراستفاده از پوشش های bimetal است. این پوشش ازنیتراته کردن ضخیم تر است و سبب افزایش مقاومت سایشی می گردد.
جدول بالا بعضی ازپوشش ها و خواص سایشی آنها را نشان می دهد . راه سوم برای بهبود مقاومت خوردگی و سایش استفاده از یک لایه به صورت آستر در سیلندر می باشد که از جنس الیاژ فولادضدزنگ و نیکل و یا از جنس فولاد سخت شده با کربن می باشد .
برای جلوگیری از سایش سطح سیلندرسطح درونی سیلندر باید سخت تر از مارپیچ باشد . معمولا سطح مارپیچ زودتر از سطح سیلندردچارسایش می شود زیرا مساحت سطحی سیلندر به مارپیچ حدود نسبت 10:1 است واین به آن معنی است که پره هایمارپیچ تنها با 11 % دیواره سیلندر طی هر حرکت انتقالی در تماس هستند .
اگرمسیرحرکت سیلندر ، مکان گلوی تغذیه و یاتاقان درست انتخاب شود ، هنگامیکه اکسترودر سرداست مارپیچ به آسانی به بیرون و داخل می لغزد. اگر برای وارد نمودن مارپیچ به سیلندر ویا چرخاندن آن باید آن را گرم کرد بدین معنی است ، که یک جزء درمسیر درست خود قرار نگرفته است. کار با اکسترودی که در مسیر درست نصب نشده است می تواند آسیب های جدی را بوجود آورد.
فشاربالا در سیلندر اکسترودر می تواند خیلی خطرناک باشد . در نتیجه یک دیسک آزاد ( rupture disk) به هد اکسترودر به منظور ایمنی نصب می شود.ممکن است در هر اتفاقی فشار مذاب در سیلندر افزایش یابد بنابراین ، این دیسک عمل کرده و فشار را شکسته و کاهش میدهد . سیلندر ها به طورمعمول با مقاومت فشاری psi 10000 طراحی می شود .
شکل بالا یک دیسک ازاد fike که درون سیلندر اکسترودر می چرخد را نشان می دهد .
سه نوع هیتر برای گرم کردن سیلندر اکسترودر و آداپتور وجود دارند : cast ,cermic,micaاین هیترها باید ماکزیمم مساحت اطراف سیلندر را بپوشانند تا ازایجاد لکه های داغ جلوگیری شده و گرمای یکسانی را فراهم کنند . اکسترودر های بزرگ عموماً هیتر cast دارند و در اکسترودر های کوچکتر از پیوند هیترها استفاده می شود . هیترهای cermic به نسبت هیترهای mica برای دماهای بالاتر طراحی شده اند . هر دو هیتر در رنج دمایی وسیعی کاربرد دارند . خنک کاری سیلندر با آب یا هوا انجام می شود . خنک سازی بهتربه وسیله آب بهترو با انتقال حرارت بیشتری نسبت به هواانجام شده وهمچنین کنترل دما نیز راحت تر است . مسیرهای آب می توانند کثیف و مسدودشوند . جریان اب باید اندازه گیری شود بنابراین این سیستم باید درست کار کند . سیستم آب گردان به عملکرد آب وابسته است .مزیتی که آب دارد این است که هوای گرم را به داخل واردنمی کند .اگر سیستم خنک کاری آب درست اندازه گیری شود در کاهش گرمای سطح اکسترودر خیلی مؤثر میباشد و میتواند عملکردخوبی داشته باشد.
در شکل بالاسیستم های خنک کاری برای سیستم های گردش آب و هوا نشان داده شده است . فاصله گذارهای شیاردار اطراف سیلندر در سیستم air-cooled )خنک سازی بوسیله هوا(مساحت سطحی اضافی برای بیرون راندن گرما فراهم کرده و بازده خنک سازیرا افزایش می دهد . سیستم های air-cooled یک فن برای جریان هوا دارندو ماکزیمم بازده را برای فرآیندهای مختلف فراهم می کنند.
اکسترودرهای تک مارپیچه سه قسمت متفاوت دارند که در شکل بالا نشان داده شده است.
قسمت های مختلف مارپیچ :
قسمت تغذیه
در این قسمت برای انتقال پودر و دانه از گلوی تغذیه به سمت اکسترودر از پره های عمیق استفادهمیشود .
قسمت انتقال در این قسمت به تدریج ازعمق پره ها کم شده تا دانه های نسبتامذاب راانتقال دهند. رزین ها درقسمت انتقال طی فرآیند مذاب متراکم می شود .
قسمت سنجش
آخرین قسمت مارپیچ است که کم عمق ترین پره ها را دارد .
Recent Comments