خط توليد پروفيل upvc|خط توليد پانل upvc|خط توليد ديوارپوش pvc|خط توليد پنل سقف کاذب|خط توليد تايل سقفي|خط توليد پروفيل درب و پنجره upvc
براي اين منظور استفاده از اکسترودهاي دو ماردون مخروطي شکل(Conical) و يا استفاده از اکسترودرهاي دوماردون موازي (Parallel) براي توليد با ظرفيتهاي بالا و با استفاده ازگيربکسهاي گشتاور بالا و طراحي خاص ماردون متداول مي باشد.
قطعات استفاده شده در اين نوع خطوط توليد از برترين برندهاي جهان از قبيل Siemens ‘ ABB‘ Schneider Electric و غيره مي باشد.
با استفاده از قالبهاي مناسب ‘ با طراحي دقيق با کيفيت و سرعت بالا و خطوط اکستروژن و کو-اکستروژن امکان توليد انواع پروفيلهاي درب و پنجره 3 کاناله‘ 4 کاناله ‘ 5 کاناله و يا پروفيل داراي قسمتهاي لاستيکي از قبيل زهوارها (کو اکسترود شده) ‘ توليد پروفيل با لايه رنگي( اکرليک ASA) و طرح دار (embossed) با کيفيت عالي مقدور مي باشد.
خط توليد و فرآيند توليد پروفيل upvc با کيفيت و استاندارد
براي توليد يک پروفيل upvc با کيفيت بالا 4 مرحله را به ترتيب مي توان نام برد :
1- انتخاب مواد اصلي تشکيل دهنده :
دانش انتخاب مواد لازم براي ترکيب با پلي وينل کلرايد براي به دست آوردن محصولي با کيفيت.
2- ترکيب کردن مواد : که شامل سنجش ، اندازه گيري وترکيب همه مواد براي توليد مخلوطي يک دست و هموژن است.
3- فرايند اکستروژن وشکل دهي : توليد يک محصول کاربردي از يک فرايند که شامل نرم کردن پودر ترکيب شده ، شکل دهي اين پلاستيک به وسيله غالب هاي مخصوص ، خنک کردن شکل نهايي توسط قالب هاي کاليبره شده و حمام هاي آب سرد و ميز هاي کاليبراسيون است .
4- طراحي : استفاده از تکنولوژي ي اکستروژن وساخت براي پنجره در مدل هاي گوناگون.
انتخاب مواد اصلي تشکيل دهنده:
پروفيل شامل مواد تشکيل دهنده مختلفي است .در حدود 85 در صد ماده تشکيل دهنده اصلي پلي وينل کلرايد است .پلي وينل کلرايد مورد استفاده براي توليد پروفيل عموما ازنوع سوسپانسيون(65-68)است که در حالت خاص آن پارامتر هايي مانند دوام ومقاومت در برابر شرايط جوي که از فاکتور هاي ضروري براي پروفيل در و پنجره است را دارا نمي باشد.
مشخصات و مزاياي اجزا ترکيبي :
1- پايدار کننده حرارتي
جلوگيري از تخريب ترکيب در حين فرايند اکستروژن
کاهش اثر نور خورشيد بر روي فريم وقاب که باعث تخريب مي شود
2- اصلاح کننده ضربه
افزايش خواص چقرمگي به pvc که ذاتا شکننده است
جلوگيري ازشکستن در حين توليد ، شکل دهي و کاربر نهايي
3- پر کننده
افزايش خواص مکانيکي (چقر مگي و مقاومت ضربه)
کاهش قيمت حصول
4- پايدار کننده upvc
کاهش اثر نور uv بر روي پروفيل
جلوگيري از تغيير رنگ وتخريب توسط نورuv
5- دي اکسيد تيتانيوم
مشارکت در ايجاد رنگ سفيد در پروفيل وانعکاس نورخورشيد
جلوگيري از تمرکز حرارت بر روي سطح پروفيل
6- روان کننده
خثي کردن نيرو هاي اصطکاکي بين پروفيل وغالب که باعث خرابي غالب و کدر شدن محصول مي شود
پايدارماندن سطح صاف فريم وقاب
7- کمک فرايند
بر روي مورفولوژي ترکيبpvc تاثير دارد
ممانعت از تغيير کيفيت ناخواسته درحين توليد
8- پيگمنت
ايجاد رنگ هاي خاص در پروفيل
ايجاد تنوع در محصول
پايدار کننده هاي حرارتي :
اگر استابلايزر حرارتي وجود نداشته باشد،pvc در تماس با دماي بالا و حرارت زياد اکسترودر دومارپيچه حتما خواهد سوخت و حالتي زوغالي به خود خواهد گرفت.با استفاده از مقادير کافي پايدار کننده مناسب از تخريب ترکيب مي توان جلوگيري کرد که اين امر تضمين مي کند که خواص کاربردي ترکيب به وسيله تغيرات گرمايي شديد در حين نرم شدن متاثر نخواهد گشت.
در سيستم پنجره به محصول نهايي که در آن از مقادير کم يا نامرغوب استابلايزر حرارتي استفاده شده باشد بوسيله تابش اشعه خورشيد تحت تاثير قرار خواهد گرفت و روند تخريب وتغيير رنگ آن تسريع خواهد گشت .درصورت عدم استفاده از استابلايزر هاي مناسب،pvc مي خواهد از حالت جامد برگردد، حالت سخت به نرم ،که از لحاظ ساختاري نامرغوب است .در نتيجه غالب هاي (sash) کج وتغيير شکل يافته و فريم ها با کارکرد نامطلوب خواهد بود.اين نقصان توسط خرابي يا ناهمترازي قفل ، حرکت هاي قاب ثابت ، نقص در نگهدارنده شيشه و افزايش فضاي نفوذ بين قابو فريم نمايان مي شود.برخي از شرکت هاي توليد کننده با اضافه کردن مقدري ازدي اکسيد تيتانيوم ارزان در ترکيب مواد اوليه مواد خود مي واهند ثابت کنند که نورخورشيد انعکاس بهتر وبيشتري پيدا خواهد کرد .اين سناريو با اينوجو به گچي شدن منجر مي شود .گچي شدن زماني رخ مي دهد که Tio2 مانند يک باقي مانده پودري از پروفيل خارج شده و بر روي سطح فريم يا قاب باقي خواهد ماند .عوامل جوي مانند باران وباد اين پودر را خواهد شکست وبر روي نماي پنجره وساختمان تشکيل لکه هاي بدنما خواهد کرد.بر اساس فرماليسيون هاي ارائه شده توسطbaerlocher وtrefflerمي توان از پايدار کننده هاي پايه سرب به ميزان وphr 5 و پايدار کننده هاي بر پايه کلسيم – روي به ميزان phr2.5-3.5
pvc 100 phr استفاده کرد.اين مقدار براي پايدار کننده هاي حرارتي بر پايه قلع بين phr 1.2-1.6 گزارش شده است.کدري و لکه گذاري شيميايي گوگرد ، محدوديت فني براي استفاده از پايدار کننده هاي سربي هستند .در پروفيل هايي که از پايدار کننده هاي سربي استفاده مي کنند کدري در محصول در مقايسه با محصولات مشابه با استابلايزر متفاوت، بيشتر است .سميت آنها نيز براي کار گراني که در تماس با آن هستند باعث افسرد گي مي شود.همچنين مقدار استفاده از پايدار کننده حرارتي پايه سرب در مقايسه با پايدار کننده هاي ديگر بر پايه کلسيم-روي جايگزيني مناسب براي پايدار کننده هاي سربي هستند که هم سميت کمتر و قيمت مناسب دارند وهمچنين براي رسيدن به خواص مطلوب از مقدار کمتري در فرمولاسيون استفاده مي شود .مشکل کدري در استابلايزر هايي که پايه سربي هستند کمتر مي باشد.
مواد اصلاح کننده ضربه:
upvc اصلاح نشده در دماي محيط و پايين تراز آن مقاومت ضربه پاييني دارد .با وارد کردن يک فاز لاستيک در داخل ماتريس پليمر مي توان مقاومت پروفيل را در برابر ضربه بهبود بخشيد که اين امر مستلزم بخش خوب اين فاز در ماتريس وچسبندگي بين ان دو فاز است .بدون استفاده از واد اصلاح کننده ضربه ، محصول نهايي (پنجره) بسيار شکننده خواهد بود.پنجره بدون مقدار کافي اصلاح کننده ضربه در ساختار خود بو سيله ضربه ضربات وسايل نصب (مانند دستگاه ميخ زني)آسيب خواهد ديد يا بصورت ترک وشکستگي در برابر عوامل جويي مانند تگرگ خود را نشان خواهد داد.انواع متفاوتي از اصلاح کنند هاي ضربه وجود دارند:پلي اتيلن کلردار(CPE)، کوپليمر آکريلات پلي متيل آکريلات ترپليمر متاکريلات – بوتان ان-استيرن(MBC)، آکرينيريل – بوتان دي ان-استيرن(ABS) و کوپليمر اتيلن وينيل استات(EVA) ببخشند.در اين ميان اصلاح کننده هاي ضربه اکريلاتي به علت تورم بعد از داي ک وچسبندگي باماتريس و خواص مکانيکي خوبي که دارند بيشتر مورد توجه هستند . MBSوABS براي کاربرد هاي بيرون مناسب نيستند وبيشتر در ترکيبات شفاف کاربرد دارند.مقدار استفاده براي مواداصلاح کننده ضربه پايه اکريلاتي بين phr 5-7 گزارش شده است.
پايدار کننده هاي UV:
نور فرابنفش (uv) يک جزءطبيعي از نور خورشيد است .اين طول موج از نور سوختگي وايجاد تومر سياه رنگ در اعماق پوست (نوعي از سرطان) مي شود همچنين اين اشعه ها باعث تغيير رنگ و از بين رفتن آن در پارچه ها والياف که در وسايل منزل استفاده مي شود وساير وسايل خانه و ساختمان مي شود.اين اشعه ها همچنين باعث تغيير رنگ مواد تشکيل دهنده پروفيل درو پنجره م شود .براي به مينيممرساندن اثر نور خورشيد بايد از پايدار کننده هاي نور uv در فرماليسيون استفاده کرد که اين مواد از تغيير رنگ محصول در برابر نور خورشيد براي مدت طولاني جلوگيري خواهد کرد .سيستم پنجره که در آن از پايدار کننده هاي نور uv استفاده نشده باشد يک تغيير رنگ فاحش در مدت زمان کوتاهي که در معرض نورآفتاب قرارمي گيرد را شاهد خواهيم بود .پنجره هاي سفيد کدر مي شوند که گاهي زرد ويا حتي قهوه اي سوخته نيز به نظر خواهند رسيد.پروفيل هاي که به قهوه اي سوخته نيز به نظر درآمده اند يک سطح کدر را نشان خواهند داد ودر حقيقت تابش نور بر روي چنين سطحي بسيار ناخوشايند وبدنما خواهد بود.به علت قيمت بالاي اين جزء ترکيب بسياري از توليد کنندگان از آن استفاده نمي کنند..در فرمولاسيون هاي ارائه شده از اين جزئ بين phr0-0.3 گزارش شده است .
دي اکسيد تيتانيوم:
دي اکسيد تيتانيوم يک ترکيب معمول شميايي است که در بسياري از محصولات که رنگ سفيد براق مورد استفاده مي شود .به علت اضافه شدن Tio2 به محصول رنگ پروفيل سفيد خواهد بود.جدا از جنبه شناسايي Tio2 نقش مهمي درکارکرد نهايي وعملي پنجره دارد.به علت رنگ براق آن اشعه هاي خورشيد را منعکس مي کند ومانع از تمرکز حرارت ناخواسته بر روي سطح خارجي و داخل وخارج ها مي شود.تجمع حرارتي پيوستگي ساختار پنجره را کاهش مي دهد و باعث تخريب آن مي شود .با اين وجود مقدار مورد استفاده با توجه به شرايط اقليمي تعيين مي شود ومقدار زياد آن تغييرات ناخواسته زيادي را به وجود مي آورد .فرمولاسيون هاي متفاوت مقدار phr3-9 رابراي دي اکسدتيتانيوم پيشنهاد داده اند.استفاده از مقادير مختلف دي اکسيد تيتانيوم مي تواند شدت سفيدي متفاوتي ايجاد کند.
روان کننده ها:
روان کننده ها به عنوان کاهش دهنده اصطکاک بين سطح فلزي اکستروژن ، قالب ، کاليبراتور وپليمر به کار مي رود.اين جزء جريان صاف وپيوسته را بدون چسبندگي به سطوح فلزي را مهيا مي سازد که باعث ايجاد يک سطح فلزي صاف و غير کدر در محصول نهايي مي شود.روان کننده ها به دو دسته روان کننده خارجي (کاهش اصطکاک وسطوح فلزي )و روان کننده داخلي (کاهش اصطکاک درون پليمر به منظور کاهش ويستکوزيته در حين فرايند)تقسيم مي شود.پارفين ها و واکسهاي پلي اتيلني از جمله اين روان کننده ها هستد.بر طبق نسخه هاي ذکر شده مقدارphr1.2-0.1 استفاده از روان کننده ها به عنوان مقدار بهينه توصيه شده است.
کمک فرايند ها:
اين جزء باعث بهبود خواص ذوب مي گردد و مورفولوژي مذاب ترکيب مورد تاثير قرار خواهد داد(براي مثال پايداري ترکيب زماني که به حالت پلاستيک تغيير مي کند.)مقدار مناسب اين جزء براي اطمينان از اين که ذوب پلاستيک و خنک شدن در يک سرعت يکسان است ضروري است زيرا باعث همگن شدن وبهبود استحکام مذاب مي شود.بدون استفاده از کمک فرايند يک ناپيوستگي در کيفيت يا در حين کاربرد بوجود مي آيد .استفاده ازآن باعث افزايش شفافيت و براقيت پروفيل نيز مي گردد.مقدارمور نياز کمک فرايند در فورمالاسيون بين phr1.5-0.5 است.
پر کننده:
در pvc سخت استفاده از پر کننده محدود به افزايش چقرمگي که بوسيله قرار گرفتن ذرات در داخل زنجيره ها ي پليمري است مي شود وکاهش قيمت در درجه بعدي قرار دارد.کربنات کلسيم پوشش داده شده با اندازه ذرات کوچکتراز 100 نانومتر کاملا مطلوب تشخيص داده است.پوشش دادن کربنات خيس شدن آن توسط پليمر را افزايش مي دهد که اين باعث ايجاد چسبندگي بهتر و در نتيجه پيوستگي بيشتر مذاب و در نهايت خواص بالاتري خواهد بود.استفاده از کربنات بر روي براقيت محصول نهايي نيز تاثير گذار خواهد بود بدين ترتيب که کربنات با اندازه ريزتر براقيت بيشتري ايجاد مي کند.استفاده از مقدارphr4-10 کربنات کلسيم در فرمالاسيون ها توصيه گشته است.در نهايت بايد ذکر کرد که نوع pvc مورد استفاده، نوع خام،آن بود که سابقه نداشته باشد، به عبارتي از پودر پلي وينيل کلرايد خام استفاده مي شود.توليد کنندگاني که از پروفيل بازيافتي که آنرا بسيار ريز کرده اند براي توليد محصول استفاده مي کننداين ريسک را مي پذيرند که محصولي با کيفيت پايين که پايداري ، استحکام ، مقاومت در برابرشرايط جوي وسطحي ناهموار دارد را توليد کنند.
فرآيند توليد پروفيل UPVC
فرايند توليد پروفيل UPVC شامل دو مرحله اصلي مي باشد:
1- مرحله ميکس و آماده سازي مواد اوليه در دستگاه ميکسر
2- مرحله شکل دهي و توليد پروفيل در دستگاه اکسترودر
در مرحله اول PVC و افزودني هاي ديگر ، با درصد مشخص توسط دستگاه ميکسر ترکيب سرد و گرم مي شود . مواد ترکيب شده بين 12 تا 24 ساعت در دماي محيط مي ماند تا الکتريسيته ساکن حاصل از ميکس از بين برود و دماي آن با دماي محيط يکسان گردد.
مواد پس از مرحله ميکس به صورت اتوماتيک وارد دستگاههاي اکسترودر ميشود .پس از تنظيم و نصب قالب پروفيل مورد نياز و هم چنين قسمت هاي کاليبراتور و تانک هاي خنک کننده ميبايست دماي سيلندر و دستگاه اکسترودر و قالب به حد معين برسد. اين ميزان دما بسته به نوع سطح مقطع پروفيل متفاوت است که معمولا براي سيلندر بين 165 تا 185 درجه سانتيگراد و براي قالب بين 198 و 202 درجه سانتي گراد ميتواند متغير باشد.
دستگاه اکسترودر شامل دو عدد محور مارپيچ با چرخش غير همسو ميباشد که مواد را به صورت يکنواخت از قسمت سيلو به طرف قالب هدايت ميکند. سيلندر دستگاه شامل چهار قسمت مي باشد که هر کدام به ترتيب وظيفه پيشگرم کردن مواد ، پلاستيسيته کردن تبديل مواد به شکل خميري خروج گازهاي متصاعد شده و در نهايت شکل گيري پروفيل را به عهده دارند ، پس از خروج پروفيل از قسمت کاليبره و تانک هاي خنک کننده اطلاعات مربوط به پروفيل روي آن حک ميشود . در نهايت پروفيل وارد قسمت برش شده و در ابعاد 6 متري برش داده و بسته بندي مي گردد.
سبكي وزن، خمش پذيري، عدم اشتعال، عايق بودن در مقابل حرارت و الكتريسيته، مقاومت در برابر مواد شيميايي و بيولوژيک، قابليت تبديل به سطوح سيقلي، قابليت تلفيق با مواد افزودني مختلف و بالاخره انعطاف پذيري در به كاربردن طرح هاي متعدد، UPVC را به يک نوع ترموپلاست مدرن که مناسب ترين جايگزين براي آلياژهاي فلزي و غير فلزي در صنعت در و پنجره سازي است تبديل نموده است.
مواد تشکيل دهنده پروفيل UPVC
فرمولاسيون توليد پروفيل درب و پنجره UPVC
در فرآيند توليد UPVC جهت افزايش کيفيت محصول، مواد افزودني خاصي به پودر PVC افزوده مي شود.
اصلي ترين ماده مورد نياز جهت توليد پروفيل هاي يو پي وي سي , (PolyVinil Choloride ) يا PVC با K-Value حدود ??مي باشد . پي وي سي يا پلي وينيل کلرايد يکي از قديميترين و پر مصرف ترين انواع پليمرها در جهان است که از پليمريزاسيون مونومر وينيل کلرايد (VCM) بدست ميآيد و تقريبا ??% از ترکيب پروفيلهاي UPVC را تشکيل مي دهد.
پي وي سي ترکيبي از مشتقات نفت خام و گاز کلر مي باشد که طي فرآيند پليمريزاسيون توليد مي شود. در فرآيند پليمريزاسيون پيوند دوگانه بين کربن- کربن شکسته ميشود و از اتصال مونومرهاي وينيل کلرايد به يکديگر پليمر پي وي سي تشکيل ميگردد.
اين ماده در دو نوع امولسيون و سوسپانسون توليد مي گردد که نوع سوسپانسيون، به دو گروه سخت و نرم تقسيم مي شود. نوع سخت داراي K- Value يا شاخص وزن ملکولي 67 – 65 و نوع نرم آن بين 71 – 68 است.
پي وي سي نوع سخت به دليل ميزان کم جذب مواد نرم کننده (DOP) به نوع Unplastisized معروف است .
منظور از UPVC همان پلي وينيل کلرايد غير پلاستيک شده است Normal 0 false false false EN-US X-NONE FA يعني
Unplasticized Poly Vinyl Chloride
اين ماده خواص فيزيکي متفاوتي را نسيت به پي وي سي دارا مي باشد.
در فرآيند توليد UPVC براي بالا بردن کيفيت محصول نهايي مواد افزودني خاصي به پودر پي وي سي (پلي وينيل کلرايد) افزوده مي شود که باعث ايجاد خواص جامد در آن مي شود اين افزودني ها از قرار زيرند :
1- ضربه گيرها (Impact Modifier)
ضربه گيرها يا مقاومت دهنده ها باعث ايجاد خواص مکانيکي در محصول مي گردند و مقاومت يو پي وي سي را در برابر ضربه و چکش خاري افزايش داده و باعث افزايش انعطاف پذيري آن مي گردند.
2- تثبيت کننده ها يا مواد ضد احتراق (Heat Stabilizers)
ثبات دهنده يا Stabilizer باعث ايجاد مقاومت در برابر حرارت در پروسه توليد (اکستروژن) و همچنين مقاومت محصول نهايي در برابر حرارت محيط مي گردد . تثبيت کننده هاي حرارتي مقاومت پروفيل را در مقابل حرارت افزايش داده باعث جلوگيري از آسيب ديدن درب وپنجره ها در مجاورت هواي آزاد وحرارت حاصل از تابش خورشيد مي گردند. تثبيت کننده هاي رنگي از تعقييرات رنگ وخراب شدن پروفيل در مقابل اشعه ماورا بنفش UV جلوگيري مي کند.
3- پر کننده ها (Fillers)
فيلرها نيز بمنظور افزايش خواص مکانيکي و همچنين کاهش قيمت تمام شده محصول استفاده مي شوند. کربنات کلسيم (CaCO3) يکي از رايج ترين فيلرهاي قابل استفاده در اين صنعت مي باشد که دانه بندي و همچنين پوشش دار بودن (Coated) آن بايد رعايت شود.معادن کربنات کلسيم به وفور در ايران وجود دارد و شرکت هاي مختلف در استخراج و دانه بندي آن فعاليت مي کنند البته اندازه دانه بندي شرکت هاي ايراني به دقت دانه بندي شرکت هاي خارجي نمي باشد و عموما مش بندي ها واقعي نمي باشند .
فيلرها مقاومت ، الاستيسيته ، چروکيدگي وساير خواص محصول نهايي را تحت تاثير قرارميدهند .
4- کمک کننده ها (Processiny Aids)
کمک فرايندها بمنظور تسهيل در ذوب وشکل دهي مواد بکار ميروند .
5- روان کننده هاي داخلي و خارجي (Internal & External Lubricants)
روانسازها يا Lubricants جهت کمک به جريان مواد در قالب حين عمليات اکستروژن و همچين جهت ايجاد سطح صيقلي وشفاف در پروفيل توليد شده بکار برده مي شود .
6- رنگ هاي صنعتي (Pigment)
رنگ دانه ها جزئي از ترکيب محصول هستند که باعث ايجاد تنوع در مصول نهايي مي شوند . رنگ دانه دي اکسيد تيتانيوم (TiO2) باعث ايجاد مقاومت در برابر رنگ پريدگي در اثر اشعه UV خورشيد مي گردد و نقش مهمي را در پروفيلهاي يوپي وي سي ايجاد مي کند . دي اکسيد تيتانيوم علاوه بر باز تابش اشعه ماوراي بنفش باعث تنظيم شفافيت رنگ پروفيل نيز مي گردد.
به ترموپلاست جديد بوجود آمده که ترکيب جديدي از ماده اوليه PVC است ؛ به علت خواص فيزيکي متفاوت اصطلاحا يک ماده غير پلاستيک اطلاق مي شود.
عدم وجود هر يک ازافزودني ها و يا تغيير ميزان بکار رفته در فرمولاسيون , مي تواند خواص محصول نهايي توليد شده را بشدت تحت تاثير قراردهد.
رزين (پودر) پي وي سي (پلي وينيل کلرايد) که در اين صنعت قابل استفاده مي باشد، رزين نوع S و با گريدهاي (K Value) بين 64 تا 68 قابل استفاده مي باشد. هر چه شماره گريد بالاتر باشد، ميزان مقاومت مولکولي محصول نهايي بالاتر بوده و براي استفاده بعنوان يک جز از مصالح ساختماني بهتر است. اين محصول با گريد 65 در پتروشيمي بندر امام ايران توليد مي گردد و در اختيار توليد کنندگان قرار مي گيرد . اما نوع وارداتي آن هم وجود دارد.
شکل فيزيکي پي وي سي به صورت پودر سفيد بوده و نوع دانه بندي آن بسته به روش پليمريزاسيون متفاوت است.
درجه پليمريزاسيون پي وي سي بسته به مدت زمان فرايند آن تغيير ميکند و هر چه زمان پليمريزاسيون بيشتر شود، طول زنجيرهاي پليمر بلندتر ميگردد. براي نمايش درجه پليمريزاسيون از شاخصي به نام K-Value استفاده ميگردد که رابطه اين شاخص با درجه پليمريزاسيون به شرح جدول زير است:
PVC Degree of Polymerization
K-Value DP
50 ± 500 53
50 ± 700 57
50 ± 730 58
50 ± 800 60
50 ± 1000 65
50 ± 1050 67
50 ± 1250 70
پليمريزاسيون PVC :
روشهاي زيادي براي پليمريزاسيون PVC وجود دارند که دو روش اصلي آن عبارتند از:
1- پليمريزاسيون سوسپانسيوني :Suspension Polymerization
2 -پليمريزاسيون امولسيوني :Emulsion Polymerization
در هر دو روش فوق، از فرايند نيمه مداوم استفاده ميشود که طي آن رآکتورها با منومر VCM، مواد افزودني، کاتاليست و آب تغذيه مي شوند. فرايند پليمريزاسيون در محيط آبي صورت ميگيرد.
اختلاف بين اين دو روش در سايز و خواص دانههاي حاصله ميباشد بنابرين روش توليد بر اساس کابرد نهايي انتخاب ميشود.
در انتهاي واکنش رآکتورها تخليه ميشوند و مخلوط آب و PVC از منومر جدا ميشوند. سپس توسط عمليات سانتريفوژ آب را از PVCجدا کرده و آنرا خشک، دانه بندي و بستهبندي ميکنند.
با ترکيب PVC مناسب با افزودنيهاي ديگر، طي فرايند اکستروژن پروفيلهاي UPVC توليد مي گردند .
سبکي وزن، خمش پذيري، عدم اشتعال، عايق بودن در مقابل حرارت و الکتريسيته ، مقاومت در برابر مواد شيميايي و بيولوژيک، قابليت تبديل به سطوح سيقلي، قابليت تلفيق با مواد افزودني مختلف و بالاخره انعطاف پذيري در به کاربردن طرح هاي متعدد، پليمر مزبور را به يک نوع ترموپلاست مدرن که مناسب ترين جايگزين براي آلياژهاي فلزي و غير فلزي در صنعت در و پنجره سازي است تبديل نموده است .
سیستمهای تمیزکننده ی اولتراسونیک
تمیزکنندهی اولتراسونیک یک دستگاه تمیزکننده است که از اولتراسوند (معمولا بین ۲۰ تا ۴۰۰ کیلوهرتز) و یک حلال تمیزکنندهی مناسب (برخی اوقات آب معمولی) برای تمیز کردن اشیای ظریف استفاده میکند. ممکن است اولتراسوند فقط با آب استفاده شود؛ اما در صورت استفاده از حلال مناسب، تاثیر آن بهبود مییابد. معمولاً تمیزکردن بین سه تا شش دقیقه طول میکشد. تمیزکنندههای اولتراسونیک برای تمیزکردن انواع مختلف اشیاء شامل جواهرات، لنز و دیگر قطعات نوری، ساعتها، وسایل دندانپزشکی و جراحی، ابزارها، سکهها و غیره استفاده میشود. تمیزکنندههای اولتراسونیک از حدود ۱۹۵۰ در صنعت استفاده شد و از حدود ۱۹۷۰ به عنوان یک وسیله ی با قیمت مناسب عرضه شد.
سیستـمهـای تمیـزکننـده ی اولتـراسونیک از انــرژی اولـتــراسـونـد بـرای حـذف آلاینـدههـای بیولوژیکیاز تجهیزات آزمایشگاهی و جراحی بـا غوطه ور کردن آنها در یک حلال استفاده میکنند (یک سری از لکههای (stain) شیمیائی ممکن است حذف نشوند.) تمیزکردن به وسیله اولتراسوند، چندین مزیت نسبت به روشهای دستی دارد: این روش میتواند شکافهای دور از دسـتـرس را تـمـیز کند، تاثیر سایشی کمتری روی بسیاری از سطوح دارد و منجر به صرفه جوئی در نیروی کار نیز میشود. تمیزکردن به وسـیـلـه ی اولـتـراسـونـد بـایـد بعد از تمیز کردن عـمومی و قبل از ضدعفونی کردن شیمیائی یا حرارتی انجام شود؛ زیرا ماده ی پروتئینی در اثر اعـمــال حــرارت مـنـعـقــد شـده و لـذا حـذف آن مشکـلتـر مـیشـود. سیستـمهای تمیزکننده ی اولتـراسـونیـک بـه صـورت نـوعـی در تـدارکات مرکزی قرار دارند؛ اما نوع رومیزی آنها را نیز میتوان در آزمایشگاهها یا اتاقهای عمل برای تمیزکردن دستگاههای کوچک مانند سوزنها و پیپتهای شیشهای استفاده کرد.
اصول عملکرد مشخصات فرایند تمیزکنندههای اولتراسونیک به صورت نوعی متشکل از یک ژنراتور الکترونیکی اولتراسوند و یک یا چند مبدل سرامیکی اولتراسوند (دیسکهای پیزوالکتریک) متصل به زیر یک محفظه ی استیل ضدزنگ پرشده با محلول تمیزکننده است. مدلهائی که تنها یک محفظه دارند، فقط برای تمیزکردن استفاده میشود؛ انواع دیگر، دو یا چند محفظه دارند و سیکلهای اتوماتیک برای شستشو، آبکشی و خشک کردن دارند. ژنراتور یک سیگنال الکتریکی تولید میکند که منجر به نوسان مدل (انبساط و انقباض آن) میشود و امواج صوتی فرکانس بالا تولید میکنند. این انرژی اولتراسونیک (بیش از ۲۰ هزار سیکل در ثانیه یا ۲۰ کیلوهرتز) به داخل محفظه منتقل میشود و محلول را فشرده و نافشرده کرده تا نواحی متناوبی از فشار بالا و پائین تولید شود. فشار پائین، حبابهای مـیـکــروسـکــوپــی ایـجــاد مـیکننـد کـه در سیکـل فشـار بـالا از داخـل منفجـر مـیشـونـد (cavitation). بـا مـنـفـجـر شـدن ایـن حـبـابهـا، امـواج صـوتـی ایـجـاد میشوند که عمل شستشوی مکانیکی روی سطح شی در محفظه ایجاد میکنند. حرکت سریع محلول تـمیزکننده به حذف پوستههای اضافی از روی سطح شی نیز کمک میکند. محلول تـمـیـزکـنـنـده (یـک حـلال آلـی یـا یـک عامل )surface-active مستقیماً به محفظه افزوده میشود. در برخی از مدلها گرم کننده هائی وجود دارد که دمای محلول را به صورت نوعی بین ۸/۳۷ و ۶۰ درجه ی سانتیگراد نگه میدارند. مدلهای دیگر را میتوان برای گاززدائی از مایعات استفاده کرد. هر بار که محلول تمیزکننده جایگزین میشود، باید برای حذف حبابهای هوا، گاززدائی انجام شود. در غیر این صورت، حبابهای هوا امواج اولتراسونیک را تضعیف میکند. اشیائی که قرار است تمیز شوند اغلب در سبدها یا سینی هائی قرار داده شده و مستقیماً در محلول غوطه ور میشوند. سبدها یا سینیها باید از جنس فلز، ترجیحا مشهائی از سیمهای با ضخامت کم (برای حداقل کردن تضغیف امواج اولتراسونیک) ساخته شوند.
در صورت نیاز به تمیزکردن اشیا با اسید یا دیگر حلالها، اسید و اشیاء در بشر گذاشته شده و سپس در یک محفظه ی پر آب قرار میگیرد. البته این روش باعث میشود انرژی و توان تمیزکنندگی تا حدی تلف شود.
در فرایند تمیزکردن با اولتراسوند، از حبابهای cavitation که در اثر متلاطم شدن مایع با امواج فرکانس بالا ایجاد میشوند استفاده میشود. تلاطم، موجب ایجاد نیروی زیادی به آلایندههای چسبیده به موادی مانند فلزات، پلاستیک، شیشه، لاستیک و سرامیک میشود. به این وسیله، امکان نفوذ به داخل سوراخها، ترکها و تورفتگیها وجـود دارد. هدف این فرایند، حذف کامل آلاینده هائی است که محکم به سطوح چسبیده اند یا روی سطوح جاسازی شده اند. بسته به نوع آلاینده و شی مورد نظر، میتوان از آب یا حلالهای دیگر استفاده کرد. آلایندهها میتوانند شامل گرد و غبار، خاک، روغن، رنگدانه ها، زنگ، گریس، جلبکها، باکتریها، قارچها، اثر انگشت، دوده، عوامل بیولوژیکی مانند خون و غیره باشند. تمیزکردن اولتراسونیک میتواند برای اشیای با شکلها، اندازه و جنسهای متفاوت استفاده شود و احتمالا نیازی به جداکردن اجزای شی، قبل از تمیز کردن نیست. اشیا نباید در حین فرایند تمیزکردن، روی کف محفظه قرار بگیرند؛ زیرا این کار، مانع از رخ دادن cavitation در سمتی از شی که در تماس با آب نیست میشود.
طراحی و اصول عملکردی
در تمیزکننده ی اولتراسونیک، شی ای که قرار است تمیز شود در یک محفظه حاوی محلول مناسب قرار داده میشود. در تمیزکنندههای آبی (aqueous)، مادهی شیمیائی افزوده شده یک ماده ی فعال در سطح (surfactants) است که کشش سطحی آب را از بین میبرد. یک مبدل تولیدکننده ی اولتراسوند، در محفظه قرار دارد که امواج اولتراسوند در آب تولید میکند که موجب تولید امواج متراکم ساز در مایع درون محفظه میشوند و میلیونها فضای خالی میکروسکوپی یا حبابهای تاحدی خلا )cavitation( در مایع ایـجاد میکنند. این حبابها با انرژی زیادی فرو میپاشند و به این وسیله، دماها و فشارهای بالا در حدود ۵ هزار کیلو و ۲۰ هزار پوند بر اینچ مربع به دست میآیند. البته اندازه ی آنها به قدری کوچک است که جز تمیز کردن و حذف آلودگیها از روی سطح، تاثیر دیگری ندارند. هر چه فرکانس بالاتر باشد، گرههای بین نقاط cavitation کوچکتر خواهد شد و امکان تمیزکردن جزئیات پیچیده تر فراهم میشود.
مبدلها معمولا پیزوالکتریک (به عنوان مثال ساخته شده از PZT )lead zirconate titanate(، barium titanate و غـیـره) هـسـتـنـد؛ اما گاهی مغناطوتنگشی (magnetostrictive) هستند. در اینجا نیاز به مواد شیمیائی اغلب خشنی که به عنوان تمیزکننده در صنعت اسـتـفـاده مـیشـونـد، نـیـسـت و یـا بـا غـلـظـت بـسـیـار کـمـتـر اسـتـفـاده میشوند. تکنیک اولتراسونیک برای تمیزکردن در فرایندهای صنعتی و نیز در بسیاری از تکنیکهای دندانپزشکی و پزشکی استفاده میشود. محلول تمیزکننده
فعالیت اولتراسونیک (cavitation) به محلول کمک میکند تا وظیفه ی خودش را انجام دهد. در شرایط معمولی آب ساده موثر نیست. مواد تشکیل دهندهی محلول تـمـیـزکـنـنـده مـوجـب بـیـشـتـر شـدن تـاثـیـر تـمـیـزکـردن اولتراسونیک میشوند. اجزای محلولهای تمیزکنندهی آبی، شامل مواد پاککننده، فاکتورهای مرطوب کننده و غیره است و تاثیر زیادی روی فرایند تمیزکردن دارد. ترکیب صحیح محلول، بسیار وابسته به شی ای است که قرار است تمیز شود. محلولهایی که اغلب استفاده میشوند، گرم (حدود ۵۰ تا ۶۵ درجــــه ی ســــانـتـیـگـــراد (۱۲۲ تـــا ۱۴۹ درجـــه ی فـارنـهایت)) هستند؛ با این حال در کاربردهای پزشکی عموما پذیرفته شده است که تمیزکردن بـایـد در دمـاهای زیر ۳۸ درجه سانتیگراد (۱۰۰ درجه فارنهایت) انجام شود تا از انعقاد پروتئین جلوگیری شود.
محلولهای بر اساس آب، برای از بین بردن آلایــنــــدههــــا بــــه صــــورت شــیــمــیـــائـــی، تـــوان محدودتری نسبت به محلولهای حلال دارند؛ به عنوان مثال، برای قطعات ظریف پوشیده شده با گریس ضخیم. طراحی یک سیستم تمیزکننده آبی موثر برای یک هدف خاص، نیازمند تلاش بـسـیــار بـیشتـری نسبـت بـه یـک سیستـم حـلال است.
گـاهی سه محفظه به صورت سری استفاده مـیشـونـد: مـحـفـظـه ی پایین تر، سیال آلوده را دربرگرفته و گرم میشود که موجب بخارشدن سیال میشود. در بالای دستگاه یک کویل تبرید وجود دارد. روی کویل، میعان رخ داده و سیال در محفظه ی بالائی میریزد. نهایتا محفظه ی بالائی سرریز شده و سیال تمیز، وارد محفظه ی کـاری یعنی جایی که تمیزکردن در آنجا انجام میشود میگردد. هزینه ی خرید این تجهیزات کـمـی بیشتر از یک دستگاه ساده است؛ اما این دستگاهها در طولانی مدت از نظر اقتصادی به صرفه هستند. میتوان در تعداد تکرار زیاد از یک سیال مشابه استفاده کرد و آلودگی و اتلاف را کاهش داد. کاربردها
تمیزکردن به روش اولتراسونیک برای مواد غــیـــرقـــابـــل جـــذب و ســخـــت مـــانـنــد فـلــزات، پـلاسـتـیـکهـا و غـیـره، که مایع تمیزکننده تاثیر شــیـمـیــائــی روی آنهــا نــدارد مـنــاســب اســت. انـــتـــخــــابهــــای ایــــده آل بــــرای تــمــیــــزکــــردن اولـتـراسـونـیـک اجـزای کـوچـک الـکـتـرونـیـکی، کابلها، میلهها، سیمها و اشیای ساخته شده از شیشه، پلاستیک، الومینیوم یا سرامیک هستند.
تـمـیـزکـردن اولتراسونیک اشیائی را که تمیز میشوند، استریلیزه نمی کند؛ زیرا ویروسها و spores بعد از تمیزشدن روی شی باقی میماند. درکاربردهای پزشکی معمولا بعد از تمیزکردن اولتراسونیک، استریلیزاسیون به عنوان یک مرحله ی جداگانه در نظر گرفته میشود.مشکلات گزارش شده
دستگـاههـای اولتـراسـونیـک مـیتـواننـد سیگنـالهای الکتریکی اضافی در فرکانس اولتراسوند تولید کنند که از طریق خطوط برق منتقل شده و در عملکرد دستگاههای الکترونیکی مجاور تداخل ایجاد میکنند. برخی از سازندگان، این مساله را با استفاده از فیلترهای داخلی power-line حل کرده اند؛ با این وجود، برخی از این فیلترها ممکن است جریانهای نشتی بزرگی ایجاد کنند (در حد چندین میلی آمپر.) در حالی که به صورت نوعی جریان نشتی ۵۰۰ میکروآمپر برای نواحی آزمایشگاهی توصیه میشود. اگر عرضه کننده ی کالا، مقدار جریان نشتی را در مشخصات محصول خود ذکر نکرده باشد خریدار باید قبل از خرید دستگاه، این مقدار را به دست آورد.
Marangopoulos و هـمـکــارانــش تــوزیــع آکــوسـتـیــک اولتـراسـونیـک در حمـامهـای تمیزکننده ی اولتراسونیک را مورد مطالعه قرار دادند. آنها دریافتند که در سیستمهای تـمیزکننده ی اولتراسونیک هم در توزیع میدان و هم در الگوی فعالیت ایجاد حباب (cavitation)، غـیـریـکـنـواخـتـی وجـود دارد کـه ایـن سوال را ایجاد میکند که آیا توزیع غیریکنواخت انرژی اولتراسونیک روی یکسانی تمیزکردن در کل حمام تاثیر دارد؟
تمیزکنندههای اولتراسونیک باید همیشه با درب بسته استفاده شوند به خصوص زمانی که ابزارهای آلوده در حال تمیزشدن هستند. انرژی اولتراسونیک موجب ایجاد غباری از ذرات در نزدیکی سطح حمام میشود. این ذرات معلق ممکن است موادی داشته باشند که بتوانند وارد الوئولهای ریهها شوند. همچنین برای اجتناب از آسیب و ایجاد سوراخ توسط اشیای تیز در تمیزکننده، نیز باید احتیاط لازم به عمل آید. دستگاهها باید تنها زمانی از سینیها برداشته شود که سینی به صورت کامل از حمام خارج شده و دستگاهها کاملا قابل رویت است. نکات خرید
یک سیستم تمیزکننده ی اولتراسونیک ماجولار ارجح است؛ زیرا در این دستگاه، بخشهائی که نیاز است برای سرویس یا جایگزینی برداشته شوند به راحتی جدا میشوند. مشابه هر خرید دیگری، توصیه میشود که قبل از تصمیم گیری برای خرید یک دستگاه خاص، وجود پشتیبانی خدمات محلی آن بررسی شود.مهار هزینهها
بـایـد قـبـل از تـصـمـیـم گـیـری بـرای خـریـد یک مدل خاص، نوع، کیفیت و هزینهی محلولهای تمیزکننده که میتوان برای آن استفاده کرد را بررسی و مقایسه کرد. هزینه ی لوازم جانبی (مانند بشرها، سبد، سینی، غیره) نیز باید در نظر گرفته شوند.
ممکـن اسـت خـدمـات سـرویس توسط یک ســــازمــــان شـخـــص ثـــالـــث هـــم ارائـــه شـــونـــد. تـصـمیمگیری در مورد خرید قرارداد خدمات باید به دقت بررسی شده و میتواند به چند دلیل تـوجـیـه شـود. خـریـد قـرارداد خـدمات تضمین مـیکـنـد کـه نـگـهـداری پـیـشگیرانه در بازههای زمـانـی منظم انجام خواهد شد و به این وسیله هـزیـنـههـای نـگـهداری پیش بینی نشده کاهش مییابد.
بـا تـوجـه بـه تـداوم هـزیـنـههای عملکردی و نــگـهــداری تـمـیــزکـنـنــدههــای اولـتــراســونـیــک، هـزینهی اولیه برای خرید آنها، هزینهی کلی مالکیت را به صورت صحیح منعکس نمیکند.
همان طور که مثال بالا نشان میدهد هزینه ی خرید اولیهی دستگاه، تنها بخشی از هزینه ی کلی عملکرد دستگاه در طول هفت سال است. بنابراین به جای این که تصمیمگیری در مورد خرید تنها بر اساس هزینهی خرید اولیه انجام شـود بـایـد هزینههای عملکردی در طول عمر دستگاه نیز در نظر گرفته شوند.مراحل توسعه
سـیـسـتـمهـای تمیزکننده ی اولتراسونیک از دهـه ی ۱۹۵۰ در بـیـمـارستانها و آزمایشگاهها اسـتـفــاده شــده انــد. در دهـههـای ۱۹۶۰ و ۱۹۷۰ مبـدلهـای پیـزوالکتـریـک جایگزین مبدلهای الکتـرومغنـاطیسی شدند. جدیدترین تغییرات، استفاده از فرکانسهای بالاتر برای اجتناب از نـویـز ancillary و استفـاده از میکـروپـرسسـورها برای کنترل فرکانس و دما بوده است.
اکسترودر
نام انگلیسی: Extruder
اکستروژن یکی از روش های شکل دهی است که برای کاهش ضخامت یا سطح مقطح مواد به کار میرود. اکستروژن روشی بسیار انعطاف پذیری است و با استفاده از حدیده مناسب می توان طیف وسیعی از تولیدات را تهیه کرد. به عنوان مثال: تولید دانه گونه Granule production، تولید پروفیل Profile production، تولید ورقه های بسیار نازک به طریقه دمشی Film blowing، قالبگیری دمشی Blow Molding.اکسترودر یعنی مجموعه محفظه و ماردون که می توان به عنوان بدنه و واحد اصلی تولید قطعاتی با اشکال مختلف به کاربرد. اکسترودرها به دودسته اکسترودر تک ماردونهواکسترودر دو ماردونه تقسیم بندی می شوند. اکسترودر ماردونه سه قسمت مجزا دارد ناحیه تغذیه Feed Zone. ناحیه تراکم و فشردگی Compression Zone و ناحیه اندازه گیری و سنجش.
یکی از مهمترین ویژگی پلیمرها و به ویژه پلاستیک ها سهولت شکل پذیری آنهاست . در بعضی حالات، قطعات نیمه کاملی نظیر ورقه ها یا میله های تولید شده، متعاقباً با استفاده از روشهای متداول ساخت، مانند جوشکاری یا ماشین کاری به قطعه نهایی تبدیل می شود. اما در بسیاری مواقع، قطعه نهایی، علیرغم برخورداری از شکلی کاملاً پیچیده، طی یک مرحله تولید می شود. عملیات حرارت دادن، شکل دادن و خنک کردن ممکن است( مانند تولید لوله به روش اکستروژن) به دنبال یکدیگر و بدون وقفه (Continuous) انجام شود و یا ممکن است طی مراحلی ناپیوسته، زمانگیر و تکرار شونده( مثل عملیات تولید تلفن خانگی به روش قالبگیری تزریقی) صورت پذیرد که در اکثر موارد، فرایند به طور خودکار انجام شده برای تولید انبوه بسیار مناسب است . طیف وسیعی از روشهای شکل دهی برای پلاستیک ها و پلیمرهای شکل پذیر کاربرد دارد. در بسیاری از حالات انتخاب روش به چگونگی شکل نهایی قطعه و گرما نرم یا گرما سخت بودن ماردون بستگی دارد . بنابراین در عملیات طراحی، آگاهی طراح از روش های متنوع شکل دهی، حائز اهمیت است زیرا اشکال ناجور و نامناسب قطعه و یا مسائل جزئی کار طراحی، ممکن است محدودیت هایی در انتخاب روش قالبگیری برای طراح ایجاد کند. دسته بندی اکسترودرهای متداول این دسته بندی شامل گونه های زیر می شود.
اکسترودر تک ماردونه
نام انگلیسی: One Screw Extruder
یکی از متداولترین روشهای شکل دهی پلاستیک ها، اکستروژن است که از یک ماردون در داخل محفظه ای تشکیل شده است. پلاستیک ها معمولاً به صورت دانه ای شکل یا خاکه نرم از قیف به ماردونه تغذیه می شود . آنگاه در حال حمل به وسیله ماردون در طول محفظه، در اثر هدایت حرارت از طرف گرم کننده های محفظه (Barrel Heaters) و برش ناشی از حرکت بر روی لبه های ماردون گرم می شود . عمق معبر (Channel-Depth) در طول ماردون کاهش یافته موجب فشرده شدن مواد می شود . در انتهای محفظه اکسترودر، مذاب با عبور از حدیده ای به شکل مورد نظربرای محصول نهایی در می آید.همانطورکه بعدا خواهیم دید، به دلیل امکان استفاده از حدیده های مختلف، اکسترودر یعنی مجموعه محفظه و ماردون را می توان به عنوان بدنه و واحد اصلی تولید قطعاتی با اشکال مختلف به کاربرد اکسترودر ماردونه سه قسمت مجزا دارد:
الف) ناحیه تغذیه (Feed Zone): کار این ناحیه، دادن گرمای اولیه به پلاستیک و انتقال آن به نواحی بعدی است . طراحی این ناحیه حائز اهمیت است. زیرا عمق ثابت ماردون طوری انتخاب شود که مواد لازم و کافی را به ناحیه اندازه گیری (Metering Zone) تغذیه کند؛ به طوری که نه دچار گرسنگی شود و نه در اثر زیاد بود ن مواد، لبریز و پس زده شود. طراحی مناسب (Optimum) و متعادل، به طبیعت و شکل مواد تغذیه شونده (Feedstock) ،شکل هندسی (Geometry) ماردون و خواص اصطکاکی پلاستیک نسبت به ماردون و محفظه بستکی دارد . رفتار اصطکاکی مواد تغذیه شده، تاثیر قابل توجهی بر آهنگ ذوب شدن مواددارد.
ب) ناحیه تراکم و فشردگی (Compression Zone): در این ناحیه، عمق ماردونه به تدریج کاهش می یابد که موجب متراکم شدن و فشردگی پلاستیک می شود. این فشردگی دو نقش عمده ایفا می کند؛ یکی آنکه هوای محبوش در داخل مواد را به ناحیه تغذیه می راند و دیگر آنکه انتقال حرارت را با کاهش دادن ضخامت مواد بهبود می بخشد.
ج) ناحیه اندازه گیری و سنجش: در این ناحیه، عمق ماردونه یکسان و ثابت، اما بسیار کمتر از عمق ناحیه تغذیه است. در این ناحیه، مذاب به صورت همگون و یکنواخت در می آید به طوری که با آهنگ ثابتی، در درجه حرارت و فشار یکسان و ثابت، به حدیده تغذیه می شود. این ناحیه به سهولت و سادگی تحلیل و ارزیابی می شود؛ زیرا مشتمل بر جریان مذاب گرانروان در داخل مجرایی با عمق و ابعاد ثابت است.
طول نواحی سه گانه ماردون خاص، بستگی به ماده ای دارد که تحت اکستروژن قرار می گیرد . برای نمونه نایلون خیلی سریع ذوب می شود، به طوری که تراکم و فشردگی مذاب در طول یک گام از ماردون نیز قابل تامین است. اما پلی وینیل کلراید، به حرارت بسیار حساس است و لذا طول ناحیه فشردگی برای آن برابر با طول ماردون است. از آنجا که پلاستیک ها دارای گرانروی های متفاوت هستند، رفتار آنها در خلال اکستروژن نیز متفاوت است.
آهنگ وزنی خروجی واقعی 25 % با آنچه نشان داده شده اختلاف نشان می دهد که بستگی به دما، سرعت ماردون و غیره دارد. در اکسترودرهای تجاری، نواحی اضافی برای بهبود کیفیت محصول به ماردون افزوده می شود. به عنوان نمونه، ناحیه اختلاطی (Mixing Zone) مشتمل بر پلکان هایی (Flights) با گام کمتر یا معکوس، به منظور کسب اطمینان از یکنواختی مذاب و کافی بودن آن در منطقه اندازه گیری، استفاده می شود .
برخی از اکسترودرها ناحیه هواگیری(منفذ خروج هوا) وجود دارد. وجود این ناحیه به این دلیل است که برخی پلاستیک ها جاذب رطوبت(Hygroscopic) هستند یعنی از محیط اطراف خود رطوبت جذب می کنند و اگر به همین صورت مرطوب در اکسترودر فاقد ناحیه هواگیری استفاده شوند، کیفیت محصول نهایی خوب نیست؛ زیرا در داخل مذاب، بخار آب محبوس می شود . برای رفع این مشکل راه حل آن است که مواد تغذیه شونده به اکسترودر را قبلاً خشک کنیم. این روش گران و پر هزینه است و امکان آلودگی نیز در مواد ایجاد می کند. روش دوم، استفاده از محفظه های منفذدار (Vented Barrels) است . در اولین قسمت ماردون، مواد که به صورت دانه بندی است، پس از ورود ذوب شده، سپس به طریق معمول فشرده و همگن می شود. آنگاه با ورود به ناحیه غیر فشردگی (Decompression-Zone) ،فشار مذاب به محیط کاهش می یابد؛ این عمل، امکان خروج و گریز بخار و سایر مواد فرار از داخل مذاب را از طریق منفذ تعبیه شده در بدنه اکسترودر فراهم می کند. آنگاه مذاب در طول محفظه به ناحیه دوم فشردگی هدایت می شود تا از محبوس شدن هوا در مذاب ممانعت به عمل آید. دلیل دفع بخار این است که در دمایی برابر با 250 درجه سانتیگراد، بخار آب موجود در پلاستیک مذاب دارای فشاری برابر 4 MN/m2 است که موجب خروج آسان آن از مذاب و گریز از منفذ خروج می شود . توجه کنید که چون فشار محیط تقریباً 0.1 MN/m2 است، استفاده از مکش خلاء (Vacuum) در منفذ خروجی، اثر ناچیزی در خروج بخار و مواد فرار دارد. یکی دیگر از اجزای مهم اکسترودر، صافی (Gauze Filter) پس از ماردون و پیش از حدیده است. این صافی به صورت کاملاً موثری هرگونه مواد ناهمگون و ناخالص یها را از مذاب جدا می کند . عدم وجود آن حتی ممکن است موجب انسداد حدیده گردد. این صفحات صاف و غربال کننده معمولاً مذاب را تا مقیاس 120 تا 150 mصاف و تصفیه می کنند. اما شواهد موجود نشان می دهد که ذراتی کوچکتر از مقیاس فوق، موجب شروع ایجاد ترک های مویین در تولیدات پلاستیکی نظیر لوله های تحت فشار پلی اتیلنی می شود . برای چنین مواردی صافی های بسیار ظریفی در مقیاس 45 mبه کار می رود که به گونه ای موثر و جالب توجه، کیفیت و عمر مفید محصول را بهبود می بخشد. از آنجا که این صافی های ظریف آسیب پذیر است، توسط صفحه سرعت شکنی (Breaker plate) هدایت می شود. این صفحه تعداد زیادی سوراخهای مماس بر یکدیگر و بسیار تنگاتنگ دارد که بدون اینکه به ذرات جامد سوخته (Dead-Spots) احتمالی همراه با مذاب اجازه ورود دهد، مذاب را عبور می دهد. این صفحه سرعت شکن همچنین جریان مذابی را که پس از خروج به صورت حلزونی در آمده است خطی می کند. چون منافذ این صافی های ظریف به تدریج بسته می شود، پی در پی باز شده، تعویض می شود . در بسیاری از اکسترودرهای پیشرفته با صافی های ظریف، کار تعویض آنها بدون نیاز به توقف اکسترودر صورت می گیرد . همچنین باید خاطر نشان کنیم که اگرچه این وظیفه اصلی صفحه سرعت شکن و صاف نیست؛ اما به ایجاد فشار معکوسی که موجب بهبود اختلاط مذاب می شود کمک می کند. چون فشار در حدیده حائز اهمیت است، شیری (valve) پس از صفحه سرعت شکن در اکسترودر وجود دارد که امکان تنظیم لازم را فراهم می آورد. چگونگی جریان (Mechanism of flow) پلاستیگ با حرکت در طول ماردون به صورت زیر ذوب می شود. نخست لایه نازکی (Thin Film) از ماده مذاب در جداره محفظه تشکیل می شود. با چرخش ماردون این لایه از جداره محفظه کنده شده به قسمت جلوی پیکان ماردون انتقال می یابد و وقتی که به سطح خود ماردون (Core of screw) می رسد، دوباره به طرف بالا جاروب می شود. بدین ترتیب حرکت چرخشی در جلوی پیکان ماردون(پیشانی ماردون) به وجود می آید . در آغاز، پلکان ماردون حاوی دانه های جامد است که در اثر حرکت چرخشی به داخل حوضچه مذاب جاروب می شود. با استمرار چرخش ماردون، مواد بیشتری به داخل حوضچه مذاب ریخته می شود. تا اینکه در نهایت فقط مواد مذاب است که پلکانهای ماردون اکسترودر وجود دارد. در اثنای گردش ماردون در داخل محفظه، حرکت مواد در راستای طول ماردون بستگی به چسبندگی مواد به ماردون یا محفظه دارد. به طور نظری در مرز افراط و تفریط (Extremes) وجود دارد. در یکی فقط مواد به درون ماردون چسبیده است، در نتیجه ماردون و مواد مانند استوانه توپر و جامدی در داخل محفظه می چرخد. در این حالت نامناسب هیچ خروجی وجود ندارد . در حالت دوم، مدار روی ماردون می لغزد و مقاومت زیادی در برابر گردش ماردون در داخل محفظه به وجود می آورد. در این حالت حرکتی در جهت محور دستگاه برای مذاب فراهم می شود که بهترین حالت ممکن است. در عمل، رفتار واقعی، حالتی بین دو واحد است زیرا مواد هم به ماردون و هم به بدنه اکسترودر می چسبد. خروجی مناسب ناشی از به وجود آمدن جریان کشنده و جلو برنده ای (Drag flow) در اثر چرخش ماردون و سکون محفظه است که به حرکت سیال گرانروان بین دو صفحه موازی شباهت دارد که در آن صفحه ای ثابت و صفحه دیگر دارای حرکت است. علاوه بر این، جریان دیگری هم ناشی از اختلاف فشار بین دو انتهای ماردون است وجود دارد وبه این دلیل که حداکثر فشار در انتهای اکسترودر به وجود می آید، جریان فشاری (Pressure flow) خروجی را کاهش می دهد. همچنین به دلیل فاصله (Clearance) که بین پلکانهای ماردون و بدنه اکسترودر وجود دارد اجازه نشتی به مواد در جهت عکس امتداد ماردون داده، به طور موثری خروجی گاز را کاهش می دهد . فرار و گریز مواد به سمت عقب ماردون در حالتی که ماردون فرسوده (Worn) باشد بیشتر است. گرما یا سرمای خارج اکسترودر نیز نقش مهمی در نحوه ذوب شدن مواد ایفا می کند. در اکسترودرهایی که دارای خروجی زیادی هستند، مواد، طول محفظه اکسترودر را سریع می کند. در نتیجه گرمای ذوب شدن کامل در اثر عمل برش تولید می شود و به استفاده از حرارت دهنده های خارجی محفظه اکسترودر نیازی نیست. بنابراین در این حالت اگر گرمای زیادی در مذاب به وجود آمده باشد سرد نگه داشتن محفظه حائز اهمیت است . در برخی مواقع خنک کردن ماردون اکسترودر نیز لازم است که البته اثری بر درجه حرارت مذاب ندارد . اما اثر مالشی(اصطکاکی ) بین پلاستیک و ماردون را کاهش می دهد . در همه اکسترودرها خنک کردن محفظه اکسترودر در ناحیه تغذیه ضروری است و لازم است تا بتوان اطمینان کاملی از تغذیه بدون درد سر مواد به اکسترودر به دست آورد. طبیعت و حالت گرمایی مذاب در اکسترودر با دو حالت ترمودینامیکی مقایسه می شود. اولی حالت بی دررو(Adiabatic) است؛ به این مفهوم که سیستم کاملاً مجزا از محیط خارج است و هیچ جذب و دفع حرارتی در آن رخ نمی دهد. اگر این حالت مطلوب در اکسترودر حاکم نباشد، فقط مقداری کار لازم است روی مذاب انجام شود تا گرمای معین تولید کند که به ازاء آن هیچ ضرورتی به گرم یا سرد کردن دستگاه نباشد . حالت مطلوب دوم، به همدما (Isothermal) موسوم است که در این حالت، درجه حرارت در تمام نقاط مذاب یکسان است و در نتیجه محفظه به گرم کردن و سرد کردن مستمر و دائمی برای جبران هرگونه اتلاف یا اخذ حرارت از مذاب برای ثابت ماندن دما نیاز دارد. در عمل، عملیات حرارتی در اکسترودرها بین دو حالت مرزی فوق قرار دارد. اکسترودرها ممکن است بدون هیچ حرارت دهنده یا سرد کننده خارجی کار کنند. لیکن در واقع در این صورت بی در رو نیست؛ زیرا اتلاف حرارت به وقوع می پیوندد. از طرف دیگر با حالت همدما در تمام طول اکسترودر مواجه نیستیم زیرا دانه های جامد نسبتاً سردی به اکسترودر تغذیه می شود . اما برخی از نواحی اکسترودر ممکن است خیلی نزدیک به حالت همدما باشد. معمولاً ناحیه انداره گیری در بحث و تحلیل همدما در نظر گرفته می شود. در حالت کلی: جریان خروجی از اکسترودر را برآیند سه مولف می دانیم جریان جلو برنده و کشنده جریان فشاری جریان نشتی (Leakage flow)
اکسترودر دو ماردونه
نام انگلیسی: Two Screw Extruder
مشخصه های عمومی اکسترودر دوماردونه در سالهای اخیر استفاده از اکسترودرهای دوماردونه که در داخل محفظه داغ اکسترودر حرکت چرخشی دارد، افزایش یافته است. این دستگاه ها در مقایسه با اکسترودرهای تک ماردونه تفاوتهایی در آهنگ خروجی، بازده اختلاط، حرارت تولید شده و نظایر آن نشان می دهد . خروجی اکسترودر دوماردونه معمولاً سه برابر اکسترودر تک ماردونه ای با همان قطر و سرعت است. اگرچه اصطلاح ماردون دوقلو اصطلاحی بین المللی برای اکسترودرهای دو ماردونه است؛ اما دو ماردون لزوماً یکسان نیستند. در واقع انواع گوناگونی از این دستگاه موجود است . برخی از آنها را که دارای ماردون هایی با گردش در جهت مخالف یا موافق یکدیگر است نشان می دهد و به علاوه ماردونها ممکن است به صورت جفت شده (Conjugated) یا جفت نشده (Non-Conjugated) باشند. در حالت جفت نشده، بین پلکان های ماردون فضای خالی وجود دارد که امکان حضور مواد را نیز فراهم می کند. در اکسترودر دو ماردونه ای با جهت چرخش مخالف یکدیگر، مواد دچار برش و فشردگی می شوند(نظیر آنچه در غلتکرانی رخ می دهد) یعنی مواد بین غلتک هایی با جهت چرخش متفاوت، فشرده می شود . دراکسترودر حاوی دو ماردون با جهت چرخش یکسان، مواد از یک ماردون به دیگری منتقل می شود. این گونه آرایش برای مواد حساس به حرارت کاملاً مناسب است؛ زیرا مواد در اکسترودر به سرعت منتقل می شود بدون اینکه کمترین احتمال ماندگار شدن موضعی (Entrapment) مواد وجود داشته باشد. حرکت مواد در اطراف ماردون های جفت نشده کمتر(کندتر) است ولی نیروی جلوبرنده (Propulsive) بزرگتر است.
روش های شکل دهی با استفاده از اکسترودر
اکستروژن روشی بسیار انعطاف پذیری است و با استفاده از حدیده مناسب می توان طیف وسیعی از تولیدات را تهیه کرد. برخی از این روش های بسیار متداول را در اینجا ذکر می کنیم:
– تولید دانه گونه (Granule production)
– تولید پروفیل (Profile production)
– تولید ورقه های بسیار نازک به طریقه دمشی (Film blowing)
– قالبگیری دمشی (Blow Molting)
خط پروفیل اکسترودر اتریشی
خط پروفیل اکسترودر اتریشی
خط پروفیل اکسترودر اتریشی
سیلندر و مارپیچ – طراحی مارپيچ در قالب گیری تزریقی
در این مقاله تفاوتهای مشاهده شده بین فرآیند پلاستیکها در صنایع اکستروژن و قالبگیری تزریقی مورد بررسی قرار گرفتهاند. ملزومات برای فرآیند کردن یک پلاستیک در قالبگیری تزریقی مشابه اکستروژنی است، اما بسیاری از عبارات متفاوتند. برای مثال سرعت توليد در اکستروژن در مدل آمريكائي به صورت pph/rpm و در تزریق به صورت oz/sec تعریف می شود. البته تفاوت اولیه این دو فرآیند این است که فرايند اکستروژن پیوسته و فرايند تزریق به صورت آغاز-ايست است. از آنجائیکه فرايند اکستروژن پیوسته است، بررسی کیفیت مادهی فرآیند شده راحتتر از تزریق است. سامانههای اکستروژنی به طور طبیعی و با دقت، فشار مذاب، دمای مذاب و آمپراژ را نشان میدهند. اندازه محصول پایانی به صورت پیوسته تا هزارم یک اینچ و یا حتی بهتر اندازهگیری میشود. با چنین مشاهدهی پیوستهای، مشکلات کیفی به سرعت مشخص میشوند. کیفیت مادهی خروجی از سيلندر در قالب گیری تزریقی معمولا هنگامی مورد توجه قرار میگیرد که بين قطعات تفاوتهاي فاحشي مشاهده شود مثل پديداري رگههای رنگ یا عدم اختلاط مشهود، زمانهای بازگشت که باعث افزایش زمان چرخه توليد میشوند، دماهای مذاب که یا كم هستند که در این حالت با همراه شدن با فشارهای تزریق ناکافی به قالب اجازه پر شدن نمیدهد (Short shot)، و یا این دماها بسیار بالا هستند که باعث چکه کردن از افشانك تزريق و یا پليسه دادن میشوند. دلایل این فقدان مشاهدهی کیفیت مناسب ماده فرآیند شده دو علت است:
اول: بیشتر قطعاتی که قالبگیری ميشوند در ابتدا برای استفاده از یک بسپار مشخص با خواص فیزیکی کافی طراحی میشوند. قطعات آزمایش میشوند و در نهایت تحت تولید قرار میگیرند. قالبگیری واقعی ممکن است در ماشینی انجام شود که فشار تزریق کافی نداشته باشد. در این حالت برای غلبه بر کمبود فشار تزریق، اپراتور فشار و دمای سیلندر را افزایش میدهد تا ماده بتواند قالب را پر کند. به ندرت رخ میدهد اپراتور بررسی کند که آیا دما بسیار بالا است یا نه، چرا که وظیفه او پر کردن قالب و توليد قطعه است و احتمالا نمیداند که به دلیل افزایش دما یا برش امکان تخریب وجود دارد. بعد از اینکه قطعه در تولید قرار گرفته است، آزمایش فیزیکی معمولا زمانی انجام میگیرد که نقصی رخ دهد.
دوم: شرکتهای تولیدکننده ماشینهای تزریق، توسط قالب سازها مورد الزام قرار نمیگیرند تا فناوری فرآیند را بهبود دهند چرا که قالب ساز از نیاز برای یک سطح بالا از فناوری فرآیند و یا ناشی از فناوری فرآیند بهبود یافته آگاه نیست. فناوریهای فرآیندی بسیار کمی انتقال از اکسترودر به قالبگیری تزریقی را انجام دادهاند. تفاوتهای سختافزاری بین اکستروژن و تزریق:
1- L/D:
طول تقسیم بر قطر (طول مارپیچ یا سیلندر تقسیم بر قطر داخلی سیلندر یا قطر خارجی پیچ ) در اکستروژن به طور معمول 30:1 و یا بیشتر است، در حالیکه در قالب گیری تزریقی 20:1 نیز طبیعی است. در تزریق بدلیل اینکه مارپیچ عمل رفت و برگشت را نيز انجام میدهد طول مارپیچ کاهش یافته است. مقدار کاهش طول موثر مارپیچ ارتباط مستقیمی با مقدار تزریق دارد. بنابراین هرچه مقدار تزریق بیشتر باشد، گرسنگی مارپیچ از بسپار بیشتر است چرا که بسپار ورودی نسبت به اولین گام به سمت جلو منتقل شده است. طراحیهای مارپیچ تزریقی معمولا تغییرات اضافی برای قسمت خوراکدهی دارند تا این گرسنگی را جبران کنند.
طول سیلندر و مارپیچ اکستروژن از 20:1 به 30:1 و بیشتر افزایش یافته است. دلیل این افزایش طول در فرمولهای مربوط به سرعت جریان و جریان فشاری توصیف شده است. سرعت جریان بر حسب اینچ مکعب در ثانیه برابر است با:
Q total = Q drag + Q pressure – Q leakage
Q pressure = p D h3 P sin2 f / 12 u L
که در معادله جریان فشاری، رابطه L خطی و h به توان 3 است. ابن بدین معنی است که هر گونه افزایش در عمق می بایست افزایش مناسبی در طول داشته باشد یا در غیر این صورت مقدار جریان فشاری جریان کلی را کاهش خواهد داد. این فرمول انتقال حرارت و ذوب را در نظر نمی گیرد و تنها برای نشان دادن مقادیر در حالت گرانروي ثابت ساده سازی شده است.
مزایای استفاده از نسبتهای طول به قطر بالا در اکستروژن عبارتند از:
افزایش سرعت ( زمان های بازگشت کاهش یافته)
دمای مذاب كمتر
نوسانات دما و فشار کمتر
بهبود بازدهی انرژی
موارد الف و ب کاهش زمان چرخه را سبب می شوند: مورد الف زمان چرخه را کاهش میدهد در صورتیکه بازگشت یک عامل محدود کننده باشد. مورد ب زمان لازم برای بسته بودن قالب را کاهش میدهد، از این رو هر دو عامل زمان چرخه را کاهش میدهند. اگر دمای پایین مذاب بدلیل کمبود فشار یا سرعت کافی تزریق باعث تزریق کم شود، یا اگر قالب در حین تزریق باز شود (کم بودن میزان تناژ قفلشدگی قالب) در این حالت یا واحد تزریق به خوبی انتخاب نشده است و یا اینکه اندازه نادرستی از ماشین انتخاب شده است. هدف بکار بردن کمترین دمای مذاب ممکن نیست بلکه دمای مذابی است که تولید کننده توصیه کرده است. در بسیاری از کاربردها مشاهده شده است که دمای مذاب مشاهده شده بالاتر از دمای توصیه شده است. کوچک سازی اندازه (کاهش قطرهای سیلندر و مارپیچ ) همراه با نسبت طول به قطر زياد میتواند یک راه حل برای فشار تزریق ناکافی باشد. اندازه تزریق باید مورد بررسی قرار گیرد تا قطر مناسبی انتخاب شود. در بسیاری از موارد ، سرعت بازگشت میتواند ثابت نگاه داشته و یا افزایش یابد. کاربردهای نيازمند محل گازگيري در صنعت قالبگیری تزریقی که دارای همان سیلندر و نسبت طول به قطر مارپیچ (20:1)، به سرعت در حال جایگزین شدن با سامانههای بدون گازگير ولي با خشککن میشوند. استفاده از یک سامانهی گازگير برای بیرون کشیدن بخار و مواد فرار در صورتیکه طراحی مناسبی داشته باشند، دارای مزایای اقتصادی بسیار بیشتری هستند. در اکستروژن نسبت طول به قطر 30:1 برای گازگيري مناسب است. جریان در ناحيهي گازگيري در یک سامانهی با طراحی مناسب وجود ندارد. فناوری برای بکار بردن سامانههای گازگيردار و استفاده از مزایای آنها بدون معایب مشاهده شده در استفاده نادرست و طراحی ضعیف وجود دارد.
2- طراحی مارپیچ:
نسبت طول به قطر بالاتر برای قسمتهای عمیقتر، امکان استفاده از عمق را میدهد که سرعت خروجی افزایش يابد. مشکلی که عمیق بودن ناحیه پيمايش يا پمپش (Metering) ایجاد میکند این است که به ذرات ذوب شده اجازه ورود به ناحیه پيمايش را میدهند. این ناحیه قادر به حذف این ذرات نیست، پس این ذرات به سمت انتهای جریان میروند که در بهترین حالت نوسانات گرانروی تولیدی در قطعه قالبگیری شد را ایجاد میکنند و در بدترین حالت حضور ذرات ذوب نشده در قطعه قالبگیری شده را سبب میشوند. در صنعت قالبگیری تزریقی عادی است که در شرایط فوق فشار پشت داي را بالا میبرند، در هنگامیکه محدودیتی (افزايش فشار) اعمال شود، سرعت جریان کاهش خواهد یافت و دمای مذاب افزایش مییابد. همچنین پایداری فشار نیز ممکن است کاهش یابد. فشار پشت داي معمولا استفاده ميشود و همیشه یک جایگزین ضعيف برای طراحی نامناسب مارپیچ است. برای کاهش سرعت جریان در برابر فشار پشت داي با یک طرح مارپیچ کلی، ممکن است فرض شود که کانالهای جریان انتهایي در مارپیچ میتوانند انرژی برشی بیشتری را فراهم کنند تا ذوب مورد نیاز برای رسیدن به دمای مذاب یکنواخت را کامل کند. این مسئله به طور طبیعی نادرست است، چرا که بررسی مختصر طبیعت ویسکوالاستیک بسپارهای با گرانروي کم مورد استفاده در قالب گیری تزریقی این برداشت نادرست را تایید میکند. در صنعت اکستروژن، طراحیهای مارپیچ معروف به حالت کلی به ندرت در اویل دهه 1950 مورد استفاده قرار گرفتند. در فرآیند اکستروژن این طراحی تک مرحلهای با گام مربعی نامیده می شود که در صنعت تزریق میتوان به آن طراحی بدون هدف! گفت: یک سوء تفاهم متداول این است که طراحی برای مصارف عمومی با گذشت بیشتری صورت میگیرد و استفاده از یک محدوده وسیعی از گرانروي بسپار را ممكن میسازد. این مسئله درست نیست. یک اختلاط با طراحی مناسب یا یک مارپیچ سدگر دارای محدودههای کارایی بسیار وسيعتري است که ناشی از توانایی آن برای پخش کلوخههایی است که به ناحیه پيمايش وارد میشوند. طراحیهای نوین مارپیچ اختلاط مناسب و پخش رنگدانه را بدون کاهش سرعت و البته بدون افزایش فشار پشت داي فراهم میسازد. فراوانی بخش های اختلاط در صنعت تزریق در سالهای اخیر ثابت میکند که عملا هر بخشي که در انتهاي قسمت پيمايش (metering) قرار گرفته باشد یک طراحی بیهدف را بهبود خواهد بخشید که البته به معنی بودن يكسان بودن همهي بخشهاي اختلاط نیست.
طراحیهای دارای سدگر که در ناحیه انتقالی مواد جامد را از مذاب جدا میکند، برای اولین بار در سال 1959 توسط Miallefer معرفی شدند، امروزه متداولترین طراحی سدگر مورد استفاده توسط R.F.Drey در سال 1970 ثبت اختراع شده است. این طراحی همچنین به طور موفقیتآمیزی در کاربردهای قالبگیری تزریقی با زمان بازگشت کم و کارایی بالا و در ابتدا با نسبتهای طول به قطر كم بکار برده شده است. در فرآیند اکستروژن کارایی به صورت پوند بر ساعت rpm (pph/rpm) و پوند بر ساعت بر اسب بخار (pph/hp) نشان داده میشود. طراحی ناحیه پيمايش طولانیتر منجر به سرعت خروجی بهتر با همان فشار پشت داي میشود. از آنجاییکه فشار پشت داي کاهش مییابد بازدهی بهبود مییابد. طراحیهای بدون هدف در بسیاری از موارد قادر به کار در فشارهای پشت داي كم نیستند چرا که اختلاط رنگ ناکافی یا کیفیت ماده خروجی پایین است. این مثال تنها ناحیه پيمايش را توصیف میکند. که وظیفه این بخش ايجاد فشار است. اگر این ناحیه قادر به ايجاد فشار مورد نیاز نباشد، نیاز به ايجاد فشار به بالا دست جریان منتقل شود که باعث کاهش توانایی ايجاد فشار بالا دست و در این صورت کاهش سرعت ذوب شدن میشود.
3- بازخوانی گشتاور:
در صنعت اکستروژن در واقع همه ماشینها با یک آمپرسنج تجهیز شدهاند که به طور مستقیم گشتاور را نشان میدهد. اگر کاربر قصد پیدا کردن تنظیمات بهینه گرم کن سیلندر را داشته باشد، خواندن گشتاور ارزشمند است چرا که کاربر بوسیله آن تلاش میکند تا نقطه اوج در منحنی ضریب اصطکاک را بدست آورد . در هر دو طرف نقطه ی اوج ضریب اصطکاک کاهش خواهد یافت و متعاقب آن توانایی مارپیچ برای توسعه و انتقال فشار نیز کمتر خواهد شد. افزایش ضریب اصطکاک، گشتاور و بازدهی مارپیچ (pph/rpm) را افزایش خواهد داد که منجر به کار کردن با دماهای کمتری از مذاب نیز خواهد شد. برای مشخص کردن نقطهي اوج این منحنی، یک روال دمایی متعلق به تولید کننده را باید انتخاب کرد ، سپس به ماشین اجازه داد تا در دماهای واقعی و بدون سرد کردن کار کند، در این حالت باید دماهای نواحی را 5 درجه کمتر از دماهای واقعی در نظر گرفت. افزایش درجه نشان دهنده تغییر آمپراژ یا فشار است. اگر آمپراژ یا فشار افزایش پیدا کرد این عمل را ادامه دهید و اگر کاهش یافت این عمل را متوقف و دماها را در حال خواندن آمپراژ یا فشار افزایش دهید. با کاهش آمپراژ یا فشار باید توقف کرد و تنظیماتی را انتخاب کرد که منجر به بالاترین فشار یا آمپراژ می شود. در قالبگیری تزریقی، گشتاور را میتوان و میبایست از طریق فشار هیدرولیکی اعمالي روی مارپیچبررسی کرد. با در دسترس داشتن باز خوانی صحیحی از گشتاور، امکان تعیین کارایی مشابه با صنعت اکستروژن به کاربر داده می شود. لازم به ذکر است که انرژی استفاده شده توسط موتور محرك مارپيچ حداقل 70 درصد کل انرژی است که توسط یک ماشین قالبگیری تزریقی استفاده میشود بنابراین انتخاب مارپیچی با کارایی مناسب باعث صرفه جویی قابل توجهی در فرآیند قالبگیری تزریقی می شود.
4- بازخوانی فشار:
در اکستروژن، فشار داي با دقت خوبی توسط یک انتقال دهنده فشار در پایین دست جریان، پايش میشود. در فرآیند قالبگیری تزریقی بازخوانی شامل فشار پشت دای است، این همان فشار هیدرولیکی است که در سیلندر تزریق خوانده می شود. نسبت سیلندر تزریق یا سیلندرها به قطر داخلی پوسته اکسترودر معمولا 10 به 1 است. بنابراین دقت در این حالت 10 برابر کمتر از انتقال دهندهای است که در پایین دست جریان (مثل فرآیند اکستروژن) قرار دارد. معمولا نوسانات بازخوانی فشار پشت دای در قالب گیری تزریقی در دسترس نیست. در بعضی از سامانههای تزریق دقت قربانی میشود، زیرا به دلیل اندازهی نامناسب، شیرهای يكطرفه در فشارهای پایین به خوبی عمل کنترل را انجام نمیدهند. نوسانات فشار در فرآیند اکستروژن یکی از متغیرهای طبیعی در مارپیچ است که بازخوانی آن نیز انجام میشود. این نوسانات کارایی مارپیچ و همچنین کیفیت و نوسانات محصول نهایی را تعیین میکنند. در قالب گیری تزریقی، بازخوانی دقیق فشار در مرحله بازگشت امکان تعیین کارایی مارپیچ را میدهد. در تزریق معمولا زمان بازگشت نسبت به دیگر متغییرهای ماشین تغییر بیشتری میکند. زمان بازگشت و تغییرات زمان بازگشت معمولا تنها نشانهی موجود برای بررسی کارایی مارپیچ در ماشینهای تزریق است. تقریبا در همهی شركتهای تولید ماشینهای تزریق، زمانهای آسودگی (که باعث افزایش زمانهای چرخهي توليد میشوند) در نظر گرفته نمیشوند. با طراحی مناسب مارپیچ ، میتوان محدودیتهای زمان آسودگی را حذف کرد و کیفیت محصول را بهبود داد. بعضی از تولید کنندههای ماشین های تزریق با افزایش rpm زمانهای آسودگی را کاهش دادهاند که در صورت عدم طراحی مناسب مارپیچ میتواند منجر به حرارت برشی بالا و کیفیت پایین محصول شود. اما بر عکس، در بسپارهای مهندسی دما بالا با طراحی مناسب مارپیچ ، rpm بالا میتواند یک مزیت محسوب شود.
5- بازخوانی دما:
در فرآیند اکستروژن دمای مذاب را در پایین دست مارپیچ بدست میآورند. محل مناسب برای بدست آوردن دما در انتهای خروجی رابط است (شکل 2) که صحیحترین حالت برای ترموکوپل حالت فرورفته در خط مرکزی جریان مذاب است (شکل 3). حالت مناسب دیگر حالت تماس محدود است (معمولا یک چهارم اینچ). با دوامترین نوع نیز یک نوع سطحی است که البته کمترین میزان صحت را دارد. تغییرات دما به راحتی از طریق بازخوانی دیجیتالی قابل مشاهده و یا قابل ثبت روی ماشینهای مجهز به ریزپردازنده است. در قالبگیری تزریقی، بازخوانی دمای مادهی خروجی از اکسترودر معمولا امکانپذیر نیست. صحت در بازخوانی دما در اکسترودرها راحتتر از ماشینهای قالبگیری تزریقی بدست میآید. اگر قصد بررسی دما در ماشینهای قالب گیری تزریقی به مانند اکسترودرها را داشته باشیم، میبایست خروجی مارپیچ را بهنگام به عقب رفتن آن پايش کرد که بدیهی است این کار بسیار مشکلی است. با این حال این نوع از پايش، به خوبی تغییرات دما را در حین بازگشت توصیف نمیکند و فقط یک معیار خوب از دمای ماده ی اکسترود شده در حین تزریق است. حداقل فایده این حالت بدست آوردن نقطه ی مناسبی است که کاربر یا مهندس فرآیند میتواند داده ها آن را ثبت کرده و به آن ارجاع کند و در صورت ایجاد تغییرات بزرگ یا دماهای اضافی مخرب برای بسپار، آن را بهبود دهد. در حال حاضر برای قطعات قالب گیری شده تعیین دماهای ماده اکسترود شده بدون وقفه در چرخه ماشین غیر ممکن است.
نتیجه گیری:
کنترل کیفیت محصول در اکستروژن به صورت درون خطی قابل اندازه گیری است و با یک هزارم اینچ یا بهتر قابل بررسی است. درقالبگیری تزریقی با اینکه اندازهگیری دشوارتر است اما غیر ممکن نیست. ماشین های قالبگیری تزریقی جدید با ریز پردازندههایی مجهز شده اند که کارکرد ماشین را کنترل و نمایش میدهند. بسیاری از این ماشینها دارای کنترل فرآیند آماری (SPC) هستند که در صورت استفادهی صحیح بسیار مفید هستند. همانطور که پیش تر شرح داده شد، در ماشین های قالب گیری تزریقی مشخصه های ضروری برای کنترل ماده ی اکسترود شده و کارایی مارپیچ در حال فراموش شدن هستند. بازخوانیهای دقیق گشتاور مارپیچ، فشار و دمای مذاب در صنعت اکستروژن به عنوان موارد ضروری در نظر گرفته شدهاند و استاندارد سازی نیز در مورد آنها صورت گرفته است که در مورد ماشینهای قالبگیری تزریقی نیز این موارد باید در نظر گرفته شوند. بطور کلی واحد تزریق فراموش شده و فناوری فرآیند در آن در نظر گرفته نمیشود. فناوری مورد استفاده موجود، از دهه 1950 استفاده می شود. در دهه های 1950، 60و70 فناوری فرآیند در صنعت اکستروژن تغییرات اساسی کرده است. نیروی محرکه این تحولات ظهور تجهیزات اندازه گیری و پايش بود که میتوانستند کیفیت محصول را به دقت نشان دهند. این تحولات با پدیدار شدن بسپارهای جدید همراه شد که این بسپارها نیاز به فناوریهای جدیدتری از فرآیند داشتند. بدین ترتیب این فرآیند تکامل پیدا کرد و امروزه در دسترس است.
همین نوع از تحول در صنعت قالبگیری تزریقی نیز رخ خواهد داد. که البته با تاخیر در حال انجام شدن است و تغییراتی از قبیل طراحیهای نوین ناحيهي اختلاط و حتی نسبت طول به قطرهای طولانیتر در حال توسعه و اجرا هستند. مشکل اینجاست که در بسیاری از موارد صنعت قالب گیری تزریقی سعی در دوباره کاری در زمینه اختراع دارد. طراحیهای اختلاط که قادر به بهبود کیفیت و نحوهي بازگشت هستند با طراحی ضعیفی از مارپیچ همراه شدهاند. طراحیهای سدگردار با نسبت طول به قطرهایی همراه شدهاند که قادر به فراهم کردن کارایی بالا و بهبود اختلاط نیستند. صنعت قالبگیری تزریقی به جای دوبارهکاری در زمینه نوآوری بهتر است که تا نوآوریهای صنعت اکستروژن را بررسی کرده و این فناوريها را بکار بندند. لازمههای دو فرآیند اکستروژن و قالبگیری تزریقی بسیار شبیه هستند. هزینههای صرف شده برای نسبتهای طول به قطر بالاتر برای مارپیچ، مشاهده و پايش بهتر و طراحیهای پیشرفتهتر مارپیچ در مقایسه با مزایای آن بسیار ناچیز است و با کاهش مصرف بسپار و ایجاد میزان کمتری از ضایعات قابل توجیه است. اگر واحد تزریق ماده اکسترود شده را با کیفیت، گرانروی و سرعت مناسب و کنترل مناسبی تولید کند، بسیاری از نقصها در این زمینه قابل اجتناب هستند. علاوه بر آن تکرارپذیری برای هر مرتبه از تزریق باید فراهم شود. هنگامیکه این دو لازمه اساسی به میزان کافی توسط واحد تزریق مورد توجه قرار گیرند، میزان ضایعات و نقصها به طور چشمگیری کاهش خواهند یافت. تحول در فرآیند قالبگیری تزریقی باعث بالا رفتن سطح صنعت و رسیدن به جایگاه بسیار بالاتر خواهد شد. اگر ما قادر به حذف نوسانات از واحد تزریق باشیم و کیفیت مناسبی از ماده اکسترود شده را فراهم کرده و امکان افزایش زمانهای بازگشت و زمان چرخه را حذف کنیم، آنگاه به طور واقعگرایانهتری میتوانیم به طراحی قالب برای بهبود جریان پرداخته و مشکلات مربوط به کیفیت محصول ناشی از طراحیهای ضعیف قالب را حذف کنیم.
گيربکس – کاربرد گيربکس – گيربکس چیست ؟
تعريف گيربکس : گيربکس ماشيني است که براي انتقال توان مکانيکي از يک منبع توليد توان به يک مصرف کننده و هچنين برآورده ساختن گشتاور و سرعت دوراني مورد نياز مصرف کننده به کار مي رود. گيربکس درواقع يک واسطه بين منبع توان و مصرف کننده توان مي باشد که بين منبع توان و مصرف کننده توان يک انعطاف پذيري بر قرار ميکند.
به دليل هماهنگ بودن گشتاور و سرعت دوراني منبع توليد توان با مصرف کننده نياز به ماشيني که بتواند اين هماهنگي را به صورت يک واسطه برقرار کند امري ضروري به نظر مي رسد دستگاهي که اين خواسته را ميتواند تامين کند گيربکس نام دارد.
منبع توليد توان مهم نيست که با چه نوع سوخت يا منابع انرژي توان را توليد ميکند بلکه اين مهم است که در شفت ورودي به گيربکس توان توليد شده را به صورت گشتاور به گيربکس منتقل کند دستگاههايي که ميتوانند توان مورد نياز گيربکس را تامين کنند شامل:
موتورهاي الکتريکي – موتورهاي ديزل – موتورهاي بنزيني – موتورماي گاز سوز- توربين هاي بخار – توربين هاي گازي – توربين هاي آبي – توربين هاي بادي – موتورهاي جت – و منابع توليد تواني که انرژي خود را از خورشيد تامين ميکنند مي باشند.
مصرف کننده ميتواند هر نوع ماشيني باشد فقط کافي است که مصرف کننده بتواند توان خروجي از گيربکس را بصورت گشتاور دريافت کند. به عنوان مثال ميتوان به موارد زير اشاره کرد:
خودروها- پمپها- هليکوپترها- هواپيماها- کشتي ها – ماشين هاي تراش و…
در دستگاه هايي که براي آ نها تنوع سرعت اهميت ندارد بلکه افزايش سرعت و کاهش گشتاور يا کاهش سرعت و افزايش گشتاور اهميت دارد از گيربکسی که بتواند اين کاهش يا افزايش گشتاور را در يک مرحله يا چند مرحله انجام دهد استفاده مي کنيم اين نوع ازگيربکس ها ، گيربکس تک سرعته نام دارند مثلا گيربکسی که در بعضي از انواع آسانسوربه کار ميرود.
در بعضي از ماشين آلات و دستگاههايي که در حين کار نياز به افزايش يا کاهش سرعت دوراني داريم نياز به تنوع سرعت نيز داريم مثلا خودروها وقتي از سر بالايي ميخواهند بالا روند بيشتر به گشتاور بالاتر نياز دارند تا سرعت بيشتر تا بتوانند از سر بالايي بالا روند و وقتي که در اتوبان ها حرکت ميکنند بيشتر نياز به سرعت بيشتر دارند تا گشتاور بالا لذا براي تامين اين تنوع سرعت و گشتاور ازگيربکسی که بتواند اين تنوع را برآورده سازد استفاده مي شود. به اين نوع از گيربکس ها که مي توانند اين تنوع سرعت و گشتاور مورد نياز را براورده سازند گيربکس چند سرعته گفته مي شود. کاربرد گيربکس در زندگي انسان از زمان اختراع چرخ و قرقره تا به امروز که به اوج شکوفايي صنعتي رسيده بسيار مهم و جزو لاينفک صنعت مي باشد.
انواع پلیمرها
انواع پلیمرها : پلیمرهـای طبیعی نظیرخانواده سلولزی ها ( پنبه ، کتان ، کاغذ ، چوب و ……… ) ، پروتئین ها ( پشم ، ابریشم ، چرم و ………..
پلی سیلیکات ها تقسیم می شوند .
پلیمرهای مصنوعی ساخت دست بشر که اکثریت مطلق مواد پلیمری را تشکیل می دهند ( پلاستیک ها ، لاستیک ها ، چسب ها ، رنگ ها ، فوم ها ، کامپوزیت ها ) پلیمرهای بازیابی شده که منشاء طبیعی داشته و برخی عوامل روی آن استخلاف شده اند نظیر نیترات سلولز ،
پلاستیک: پلاستیک ها موادی هستند مصنوعی ، که از ملکول های بزرگ و سنگین تشکیل شده اند و می توان آنها را تحت فشار و حرارت قالب گیری نمود,,خصوصیت دیگر پلاستیک این است که برخلاف لاستیکها در برابر نیروی وارده مقاومت نشان می دهد. .
لاستیک: یک لاستیک در مقابل نیروی کم تغییر شکل زیادی داده و حداقل تا ۳۰۰% طول آن در دمای محیط افزایش می یابد و زمانی که تنش قطع می گردد به حالت اولیه خود بر می گردد.
کامپوزیت: موادی هستند که از دو سازندة کاملاً متفاوت از نظر خوّاص مکانیکی ، همچنین با درصدهای وزنی بالا تشکیل شده اند که در نهایت موجب بهبود و ارتقاء خواص محصول می شوند .
هدف از ساخت یک کامپوزیت تقویت فاز ضعیف ( مثل پلی استر ) و تبدیل آن به یک مادة مرکب مستحکم (مانند فایبرگلاس) با استفاده از یک تقویت کننده مکانیکی ( الیاف شیشه ) است .
رنگ: موادی پوشش دهنده هستند که نقش تزئین و حفاظت از سطح قطعه را بعهده دارند.
پوشش های آلی عموماً از اختلاط چهار جزء مهم رزین، رنگدانه، حلاّل و مواد افزودنی بدست می آیند.
در صنعت رنگ سازی اساس کار پخش رنگدانه در رزین می باشد، ذرات رنگدانه بایستی به صورت یکنواخت در محیط پخش شوند.
پایة اصلی پوشش آلی را رزین تشکیل می دهد، انتخاب نوع پوشش از روی نوع رزین انجام می پذیرد. رزین وظایف عمده ای را بعهده دارد، ایجاد فیلم روی سطح مورد نظر از وظایف اصلی رزین است، رزین بوسیلة این خاصیت قادر خواهد بود سطح زیرین را از محیط اطراف جدا کند.
معمولاً رزین به صورت مایع روی سطح پهن شده و با انجام یک یا چند واکنش پلیمریزاسیون جامد می شود. با اینکه رزین مایع خود ساختمان پلیمری دارد ولی سطح پلیمریزه شده و جرم ملکولی آن بالاتر می رود.
مهمترین رزین ها عبارتند از :
رزین های پلی استر ، رزین های پلی اتر ، رزین های پلی اورتان ، رزین های پلی وینیلی ، رزین های اکریلیک .
رنگدانه ها :
ذرّات جامدی هستند که برای بوجود آوردن خصوصیات معینی در رنگ پراکنده می شوند.
این خصوصیات عبارتند از : رنگ ظاهری ، پوشانندگی ، دوام ، استحکام مکانیکی و محافظت از سطوح فلزی در برابر خوردگی.
چسب:
فوم:موادی جامد هستند که توسط یک گاز منبسط شده و حاوی تعداد بسیار زیادی حفره ( Cell) با شکل و اندازه یکسان می باشند .
فوم های پلیمری را به صور مختلف طبقه بندی می کنند ، یکی از مهمترین این دسته بندی ها بر مبنای دمای عبور شیشه ای (Tg 1 ) استوار گشته است :
الف : فوم های نرم و انعطاف پذیر ب : فوم های سخت
از خصوصیت مهم فومها عایق صدا و الکتریسیته بودن و ضربه وهمچنین سبکی زیاد آن است.
الیاف:در صنعت نساجی استفاده می شوند.از نظر خصوصیت مکانیکی بر خلاف لاستیکها در برابر نیرو طولش افزوده نمی گردد و قابلیت بلوری شدن هم دارد.
پلی اتیلن
پرمصرفترین پلاستیک دنیا
پلی اتیلن پرمصرفترین پلیمر در دنیا از دسته ترموپلاستیک ها و متعلق به خانواده پلی اولفین هاست و نمایان گر بزرگترین گروه از ضایعات پلاستیکی می باشد.این پلیمر کاربرد فروانی در صنعت بسته بندی دارد.برای مثال کیسه ها و دبه ها, بطری های شیر, قاشقهای پلاستیکی در آشپزخانه را می توان نام برد.خواص PE به طور گسترده ای به درجه شاخه ای بودن زنجیر آن بستگی دارد.
نحوه تولید گریدهای اصلی پلی اتیلن
PE در دو شکل اصلی به نام های پلی اتیلن با چگالی بالا(HDPE) و پلی اتیلن با چگالی پایین (LDPE) موجود می باشد.این پلیمر از طریق پلیمریزاسیون رادیکالی اتیلن تولید میشود. برای رسیدن به جرم مولکولی بالا به دلیل تبخیر بالای مونومر ͵واکنش را در فشار بالا (atm 1500-1300) و دمای بالا ( C° ۳۰۰-۸۰) نگه میدارند. در این شرایط سخت پلیمر حاصله یک پلیمر با درجه بالایی از زنجیرهای شاخه ای کوتاه و بلند است که کریستالیتی را تا حدود ۵۰% محدود میکند و سبب یک گستره ذوب نسبتا پهن میگردد.HDPE با استفاده از کاتالیست فیلیپس و یا زیگلر_ناتا تولید میشود و و این پلیمر خطی تر و درجه کریستالیتی بالاتری از LDPE دارد.
پلی پروپیلن PP
پلی پروپیلن (PP) دومین ترموپلاستیک پرمصرف از خانواده پلی اولفین هاست. در مقایسه با PE با چگالی کم و زیاد ͵PPدارای استحکام ضربه ای کمتر ولی دمای کاربری بالاتر و استحکام کششی بیشتر است .پلی پروپیلن یک از پلیمرهای با کارآیی متنوع است که در تولید قطعات مختلف پلاستیکی͵ صنعت خودرو (تزئینات داخلی͵ پروانه ها) و هم چنین در صنعت الیاف (جمن های مصنوعی طناب ضد پوسیدگی) کاربرد دارد.
تولیدPP:
پلی پروپیلن عمدتا توسط فرآیند پلیمریزاسیونی که نظم فضایی در آن مهم است͵برای به دست آوردن ساختار زنجیره ای با نظم بالاتر تولید میشود. تجاری ترین و مهم ترین نوع PP͵PPایزوتاکتیکاست.این پلیمر در دمای پایین و با استفاده از کاتالیزور زیگلر_ناتا تولید میشود. در این روش ۹۰% پلیمر حاصله به فرم ایزوتاکتیک و به همراه واحدهای تکرار شونده با آرایش سر به دم است .روش های تولید گوناگونی از جمله پلیمرزاسیون حلالی به وسیله فرآیند حلالی و پلیمرزاسیون فاز گاز مورد استفاده است. در ساختار PP ایزوتاکتیک واحدهای مونومری با گروه های متیلی با آرایش سر به دم متصل شده و همگی در یک طرف زنجیر اصلی قرار دارند با استفاده از کاتالیست های متالوسن جدید تولید گونه های مختلف PP از جمله : ایزوتاکتیک ͵سیندیوتاکتیک͵ اتاکتیک و نیمه_ایزواتاکتیک میسر میشود.ساختار نیمه_ایزواتکتیک ساختاری است که در آن هر گروه متیل دیگری در جایگاه ایزو تاکتیت قرار میگیرد و گروه های متیلی باقی مانده به صورت تصادفی جایگیری میکنند .
پروفیل های UPVC بازه بسیار گسترده ای دارند تجهیزات تولید انواع این پروفیل هااز پروفیل های پنجره UPVC تا پروفیل های تکنیکال نیاز به دانش و تکنولوژی های متفاوت دارد.
– انواع پروفیل پنجره UPVC
– انواع پانل دیوارپوش PVC
– انواع ناودانی
– انواع داکت و سینی برق PVC
– پانل های درب درسایزمختلف
خط تولید لوله های یو پی وی سی
پلی وینیل کلراید بهوسیله پلیمریزاسیون مونومر وینیل کلراید شکل میگیرد. تولید تجارتی قسمت اعظم پی وی سی عمدتاً از طریق بسپارش تعلیقی انجام میشود و از بسپارشهای تودهای و امولسیونی به میزان کمتر و از بسپارش محلولی به ندرت استفاده میشود. پلی وینیل کلراید از بلورینگی ناچیزی برخوردار بوده اما به علت زنجیرهای حجیم بسپار (نتیجه استخلاف بزرگ کلر)از استحکام و سختی برخوردار است. تی جی برای آن بالا و به میزان 81 درجه سانتیگراد است ولی میزان این تی جی آنقدر بالا نیست که فرایند با روشهای گوناگون را دچار مشکل کند. در مقابل حرارت و نور نسبتاً ناپایدار بوده و کلرید هیدروژن از آن خارج میشود. این ماده اثرات زیانبخشی روی خواص اشیا دم دست (اجزای الکتریکی) علاوه بر اثرات فیزیولوژیکی بر جای میگذارد. پی وی سی پلاستیکی سخت است که بهوسیله اضافه کردن روان کنندهها نرم و انعطافپذیر میشود. بیشترین مورد استفاده آن فتالیت است.
محصولات U-PVC از پودر خام PVC از طریق یک فرآیند فشاری و دمایی شکل میگیرند. دو فرآیند اصلی که در تولید استفاده میشوند، عبارتند از اکستروژن برای تولید محصولات پیوسته نظیر لوله، و قالبگیری برای محصولات مجزا نظیر اتصالات.
فرآیند مدرن U-PVC مستلزم بهکارگیری روشهای علمی-صنعتی پیشرفته برای کنترل دقیق متغیرهای فرآیند است. مادهی پلیمری مورد استفاده، پودری با جریان آزاد است که نیازمند اضافه کردن پایدارکنندهها و روانکنندههای مختلف است. به همین دلیل انتخاب فرمولاسیون و پس از آن اختلاط، دو عامل حیاتی در فرآیند تولید محسوب میشوند.
پلیمر و افزودنیها به دقت وزن میشوند و سپس به واحد اختلاط (میکسر)میروند.
میکسرهای با سرعت بالا، مواد اولیه را با یکدیگر مخلوط میکنند تا یک مخلوط خشک یکنواخت حاصل شود. در این مرحله، دمایی در حدود °C۱۲۰ از طریق اصطکاک و برش در میکسر ایجاد میشود. در مراحل مختلف فرآیند اختلاط، افزودنیها ذوب شده و روی سطح دانههای PVC را پوشش میدهند. پس از رسیدن به دمای مناسب، مخلوط به صورت اتوماتیک به یک مخزن خنککننده انتقال مییابد و دمایش به سرعت به حدود °C۵۰ کاهش مییابد.
اکسترودر
قلب فرآیند تولید لولهی PVC-U است، که دارای یک سیلندر با المنتهای حرارتی قابل کنترل است که در آن مارپیچ/مارپیچ های دقیقی میچرخند. اکسترودرهای جدید ماشینهای بسیار پیچیدهای هستند که به دقت طراحی شدهاند تا فشار و برش روی مواد در تمام مراحل فرآیند قابل کنترل باشد.
محصول مرحلهی قبل به درون سیلندر و مارپیچ فرستاده میشود تا از طریق گرما، فشار و برش به حالت «مذاب» مورد نظر برسد. در حین گذر از میان مارپیچ، ذرات PVC از تعدادی نواحی حرارتی میگذرد که باعث تراکم، یکنواختی بیشتر و گازگیری از جریان مذاب میشود. آخرین ناحیه فشار را افزایش میدهد تا مواد مذاب از داخل قالب عبور کنند و بر اساس اندازه و مشخصات لولهی مورد نظر شکل بگیرند. طراحی قالب از اهمیت بسیار بالایی برخوردار است، چرا که تأثیر زیادی روی یکنواختی خواص محصول نهایی دارد. پس از آن که لوله از قالب اکسترودر خارج شد، در یک کالیبراتور به کمک جریان هوا یا وکیوم به اندازهی مطلوب میرسد. طول کالیبراتور در حدود سه برابر قطر لوله است. این طول برای ثابت کردن قطر لوله قبل از مرحلهی پایانی سرمایش در حمام آب با دمای کنترل شده ضروری است.
لوله به وسیلهی یک دستگاه کشش با سرعت ثابت از مراحل کالیبراسیون و سرمایش عبور میکند. کنترل سرعت بسیار مهم است، چرا که بر روی ضخامت دیوارهی محصول نهایی تأثیر میگذارد.
یک چاپگر همراستا در فواصل مشخص، لولهها را بر حسب اندازه، نوع، تاریخ و … نشانهگذاری میکند و یک ارهی اتوماتیک لولهها را بر حسب اندازهی مورد نیاز میبرد.
یک دستگاه کوبله (Belling Machine) روی یک سر هر شاخه لوله، مادگی ایجاد میکند عموماً دو نوع مادگی وجود دارد: مادگی برای اتصال با با واشر لاستیکی و مادگی برای اتصال با چسب.
محصول نهایی پس از بازرسی و انجام آزمونهای آزمایشگاهی کنترل کیفی به انبار میرود تا در نهایت به مقصد مورد نظر ارسال شود
خواص و مزایای لوله UPVC
مقاومت در برابر خوردگی:
لوله های UPVC نارسانای جریان الکتریکی هستند و در برابر واکنش های الکتروشیمیایی ناشی از اسیدها، بازها و نمک ها که منجر به خوردگی در فلزات می شوند، مقاوم هستند. این ویژگی در سطح داخلی و خارجی لوله ی PVC-U وجود دارد. در نتیجه، استفاده از لوله های PVC-U در کاربردهایی که در آن خاک مهاجم وجود دارد، بسیار به صرفه است.
مقاومت شیمیایی بالا:
PVC در برابر بسیاری از الکل ها، روغن ها و مواد نفتی غیرآروماتیک مقاوم است. این ماده همچنین در برابر اکثر خورنده ها نظیر اسیدهای غیرآلی، بازها و نمک ها مقاوم است. برای کارهای معمول آبرسانی ، لوله های PVC-U کاملاً در برابر مواد شیمیایی موجود در خاک و آب مقاوم هستند. مسئله ی مقاومت شیمیایی تنها هنگامی مطرح می شود که محیط های غیرعادی وجود داشته باشد و یا از لوله برای انتقال مواد شیمیایی استفاده شود.
مدول الاستیسیته ی بالا و انعطاف پذیری:
مقاومت لوله های UPVC در برابر شکست یکی از مزایای عملکردی مهم آنها محسوب می شود. لوله های UPVC تحت بار قادرند بدون شکستگی تغییر شکل بدهند. مدول الاستیسیته PVC-U یکی از مزایای مهم آن برای کاربردهای دفنی محسوب می شود، به خصوص در شرایطی که حرکت یا لرزش خاک محتمل باشد (زمین لرزه و …). بالا بودن این کمیت باعث می شود تا پدیده دوپهنی در این لوله ها به حداقل برسد. همچنین با توجه به این که ضخامت لوله های فاضلابی بر اساس مقدار مدول الاستیسیته ی رزین مصرفی در ساخت لوله تعیین می گردد، بالا بودن مدول PVC-U باعث کاهش ضخامت لوله و افزایش سطح مقطع عبور جریان می شود.
استحکام کششی بلند مدت:
لوله های UPVC به گونه ای فرمول بندی می شوند تا استحکام کششی بلند مدت بالایی داشته باشند. حداقل استحکام مورد نیاز(MRS) (که در طراحی لوله های تحت فشار به کار می رود)، برای لوله های PVC-U در حدود دو برابر بیشتر از مقادیر متناظر دیگر لوله های پلاستیکی نظیر پلی اتیلن است. به همین دلیل هم ضخامت لوله های PVC-U نسبت به سایر لوله های پلاستیکی کمتر بوده و در نهایت وزن کمتری نیز دارد، که این مسئله مزیت مهمی محسوب می شود.
نسبت استحکام به وزن بالا، وزن سبک:
استحکام بالای PVC-U باعث حداقل شدن ضخامت و سبکی این لوله ها می گردد. لوله های UPVC مزیت سبکی چشمگیری دارند که جنبه ایمنی مهمی محسوب می شود. امکان حمل و نقل آسان، آسیب های کاری را حداقل نموده و نصب و حمل و نقل ارزان تر را تسهیل می کند. یک فرد می تواند به راحتی دو لوله ی ۶ متری با اندازه ۱۱۰ را حمل کند، ولی تنها قادر است کمتر از ۱/۵ متر لوله ۱۱۰ آهنی را با همان نیرو حمل کند.
اتصالات آب بند:
یک مزیت مهم برای هر لوله آب بندی اتصالات آن است. لوله های PVC-U با عمق دخول بالا و سیستم های اتصال اورینگی (Push-fit) توانسته است از طریق همین مزیت بسیاری از محصولات سنتی را کنار بزند.
مقاومت در برابر سایش/خراش
لوله های PVC-U مقاومت بسیار بالایی در برابر سایش و خراش از خود نشان می دهند. ثابت شده است که لوله های PVC-U دوام بسیار بالاتری نسبت به لوله های فلزی، سیمانی و سفالی در برابر انتقال مواد دوغابی دارند.
استحکام ضربه:
تحت شرایط نرمال،لوله های UPVCمقاومت نسبتاً بالایی در برابر آسیب های ناشی از ضربه در مقایسه با لوله های سفالی، سیمانی و بیشتر مواد رایج در ساخت لوله دارند. با وجود کاهش مقاومت ضربه لوله های UPVC در دماهای بسیار پایین، استحکام ضربه ی آن همچنان بالاتر از حد نیاز است.
مقدار زبری پایین:
زبری لوله عامل بسیار مهم و مؤثری در ایجاد افت فشار و کاهش دبی می باشد. لوله های UPVC به دلیل داشتن سطوح داخلی بسیار صیقلی (ضریب زبری و اصطکاک پایین)، مقاومت بسیار پایینی در برابر جریان سیال از خود نشان می دهند. علاوه بر این، در بسیاری از لوله ها باکتری ها در قسمت های زبر و دارای پستی و بلندی لوله تجمع می کنند (تشکیل biofilm) و به مرور راه جریان آب را می بندند، که این امر باعث افت فشار جریان شده و بر سلامت آب آشامیدنی نیز تأثیر منفی می گذارند. زبری هیدرولیکی پایین لوله های UPVC ، با ممانعت از تشکیل بیوفیلم، علاوه بر کاهش افت فشار، مانع ته نشینی لجن در شبکه های فاضلابی شده و در شبکه های توزیع آب آشامیدنی نیز باعث کاهش احتمال آلودگی می شود. بنابراین هزینه های نگهداری این لوله ها پایین بوده و طراحی اولیه ی خط لوله نیز بهینه تر صورت می گیرد.
کیفیت آب:
استفاده از فرمولاسیون مناسب جهت تولید لوله های UPVC موجب می شود تا مطابق استانداردهای NSF 61-62 بتوان از این لوله ها جهت انتقال آب آشامیدنی استفاده نمود و اطمینان حاصل کرد که مقادیر سرب، قلع و سایر عناصر سمی نظیر جیوه، کرم، کادمیم و باریم زیر حدود مجاز استاندارد می باشند.
مقاومت در برابر شعله:
لوله های UPVCبه سختی آتش می گیرد و در غیاب منبع خارجی شعله به سوختن ادامه نمی دهد. دمای شعله ور شدن خود به خودی آن ۴۵۴ درجه سانتیگراد است، که بسیار بالاتر از اکثر مواد ساختمانی است. در اثر سوختن PVC، گاز HCl آزاد می شود که این گاز از دسترسی اکسیژن به منطقه ی مشتعل شده جلوگیری می کند. به همین دلیل است که PVC را ماده ای خودخاموش شونده می نامند.
قیمت مناسب:
علاوه بر مزایای ممتاز ذکر شده برای لوله های UPVC ، قیمت این لوله ها بسیار مناسب و قابل رقابت با سایر لوله های پلیمری، فلزی، چدنی و … می باشند. به طوری که امروزه لوله های UPVC در دنیا یکی از گزینه های اصلی در شبکه های آب و فاضلاب می باشند.
موارد استفاده از یو پی وی سی
– بیشتر در صنعت ساختمان ( پروفیل درب و پنجره های دو و سه جداره و لوله) کاربرد دارد. همچنین در صنایع غذایی و دارویی و بهداشتی نیز مورد استفاده قرار میگیرد.
– صرفه جویی در مصرف انرژی تا 40%
– مقاوم در برابر نفوذ باد؛ گرد و غبار، آب و باران به داخل تا 100%
– مقاوم در برابر پوسیدگی و زنگ زدگی
– عدم نیاز به رنگ
– عایق صوتی، حرارتی و برودتی
– غیر قابل اشتعال در مواقع آتش سوزی
– قابلیت بالای انعطاف و تنوع در ساخت نگهداری و نظافت آسان
– دارای عمر مفید طولانی
– نصب سریع و آسان
پروفیل UPVC چیست ؟
مواد اصلی UPVC را نفت خام و نمک طعام تشکیل میدهند . از نفت خام ، اتیلن و از نمک ، کلر بدست می آید و از طریق پلیمر یزاسیون ، کلر، اتیلن ، وینیل کلرید با هم ترکیب و پلی وینیل کلرید یا بصورت خلاصه PVC بدست می آید. که ماده ای پلاستیکی و قابل ارتجاع است.
امروزه PVC در کنار پلی اتیلن- پلی پروپیلن- پلی استیرول به عنوان یک ماده استاندارد در زمینه های مختلف کاربرد فراوانی دارد.
فرایند تولید پروفیل UPVC
این فرایند شامل دو مرحله اصلی می باشد:
1- مرحله میکس و آماده سازی مواد اولیه در دستگاه میکسر
2- مرحله شکل دهی و تولید پروفیل در دستگاه اکسترودر
در مرحله اول PVC و افزودنی های دیگر ، با درصد مشخص توسط دستگاه میکسر ترکیب سرد و گرم می شود . مواد ترکیب شده بین 12 تا 24 ساعت در دمای محیط می ماند تا الکتریسیته ساکن حاصل از میکس از بین برود و دمای آن با دمای محیط یکسان گردد .
مواد پس از مرحله میکس به صورت اتوماتیک وارد دستگاههای اکسترودر میشود . پس از تنظیم و نصب قالب پروفیل مورد نیاز و هم چنین قسمت های کالیبراتور و تانک های خنک کننده می بایست دمای سیلندر و ددستگاه اکسترودر و قالب به حد معین برسد . این میزان دما بسته به نوع سطح مقطع پروفیل متفاوت است که معمولا برای سیلندر بین 165 تا 185 درجه سانتیگراد و برای قالب بین 198 و 202 درجه سانتی گراد میتواند متغیر باشد . دستگاه اکسترودر شامل دو عدد مارپیچ با چرخش غیر همسو میباشد که مواد را به صورت یکنواخت از قسمت سیلو به طرف قالب هدایت میکند . سیلندر دستگاه شامل چهار قسمت می باشد که هر کدام به ترتیب وظیفه پیشگرم کردن مواد ، پلاستیسیته کردن تبدیل مواد به شکل خمیری خروج گازهای متصاعد شده و در نهایت شکل گیری پروفیلرا به عهده دارند ، پس از خروج پروفیل از قسمت کالیبره و تانک های خنک کننده اطلاعات مربوط به پروفیل روی آن حک میشود . در نهایت پروفیل وارد قسمت برش شده در ابعاد 6 متری برش داده و بسته بندی می گردد .
معرفی اجزای پنجره
1- قاب و بازشو پنجره از جنس یو.پی.وی.سی
2- زهواره یو.پی.وی.سی
3- لاستیک درزبندی ای.پی.دی.ام
4- پروفیل گالوانیزه
5- شیشه با یراق
6- یراق آلات
نمونه ای از مقاطع پروفیل UPVC
مونتاژ درب و پنجره های UPVC
پروفیلهای مورد نظر با توجه به نوع سفارش درب و پنجره انتخاب شده و پس از انجام محاسبات دقیق و مهندسی و آنالیز ابعاد درب و پنجره ، طبق نقشه برش داده می شوند. سپس تعدادی از این پروفیلها به منظور ایجاد شیار آب به دستگاه مربوطه منتقل می شوند.
همزمان باعملیات برش پروفیل UPVC و ایجاد شیار آب ، پروفیل های گالوانیزه برش داده شده و درون آنها با پیچ محکم می شوند. بمنظور مقاوم سازی و تقویت درب و پنجره های تولیدی ملزم به استفاده از پروفیل گالوانیزه با ضخامت مناسب در داخل خانه اصلیپروفیل UPVC می باشیم. بکارگیری پروفیل گالوانیزه در داخل پروفیل اصلی UPVC و پیچ شدن یراق آلات روی قطعات تقویت شده، ضمن کاهش خطر افتادگی بازشوهای پنجره، مقاومت درب و پنجره های ساخته شده از پروفیل UPVC را افزایش می دهد
در ادامه در صورت نیازبه نصب دستگیره و یراق آلات (برای بخشهای باز شو) سوراخها و شیارهای مورد نیاز توسط دستگاه روی پروفیلتعبیه می شود. سپس پروفیل ها طبق نقشه توسط دستگاه جوش به یکدیگر متصل می شوند و با انتقال به دستگاه بعدی، پلیسه ها و زوائد ناشی از جوش در زوایای مختلف از بین می رود.
در نهایت روی میز کار پس از تمیز کاریهای جزئی و نهایی، یراق آلات روی درب و پنجره نصب میگردد. هر پنجره با توجه به شعاع باز شو و بسته به ابعاد آن یراق آلات مخصوص به خود را دارد که در قسمتهای قاب و لنگه پنجره نصب می گردند.این یراق آلات ازکیفیت بالا برخوردار بوده و از لحاظ مقاومت در مقابل خوردگی بعنوان یکی از مهمترین خواص یراق آلات در رده مورد قبول استانداردهای اروپایی میباشد همچنین استاندارد امنیت در مقابل سرقت نیز در یراق آلات مورد استفاده رعایت شده است
اندازه گیری و نصب پنجره های UPVC
پنجره های UPVC قابلیت نصب روی قاب های فلزی (Sub Frame ) و سازه های سیمانی، آجری و … را دارد، در زمان آماده بودن درگاه پنجره عملیات اندازه گیری بوسیله ابزار مناسب اعم از مترهای لیزری، مترهای نواری و سایر ابزار دقیق با دقت بالا اندازه گیری و جهت تعیین نقشه پنجره ها به واحد طراحی ارائه میگردند
نصب پنجره های UPVC ارتباط مستقیم با دوام و عملکرد این نوع از پنجره ها دارد، عملیات نصب باید به گونه ای انجام شود که اهداف زیر حاصل گردند:
1- قابلیت تحمل بارهای زنده و مرده
2- جلوگیری از تبادل صوت و حرارت
3- باز و بسته شدن مطمئن
4- تمیز کردن درگاه نصب
5- جایگذاری پنجره و تراز کردن آن
6- انجام سوراخ کاریهای لازم
7- ثابت کردن پنجره در محل نصب با استفاده از پیچهای مناسب
8- نصب شیشه ها و جا انداختن زهواره
9- درزبندی نهایی با استفاده از تزریق فوم و سیلیکون
10- رگلاژ نهایی
استانداردهای تولید وآزمایشات مواد اولیه
برای تولید پروفیل میتوان از مواد اولیه دست نخورده ، مواد بازیافت شده و مواد قابل بازیافت استفاده نمود. کاربرد این مواد با توجه به استاندارد کیفیت RAL-GZ 716/1 تحت شرایط و آزمایشات خاصی قابل قبول میباشد.
کاربرد مجدد مواد با فرمول یکسان توسط همان کارگاهی که قبلاً آنها را تولید کرده در صورتی که به کیفیت پروفیل ها صدمه نزنند و عاری از هر گونه مواد نرم کننده و مواد خارجی باشند تحت شرایط خاصی امکان پذیر میباشد.
مواد بازیافت شده و قابل بازیافت |
کاربرد مواد اولیه دست نخورده |
استاندارد |
نوع آزمایش |
≥ 71 °C |
≥ 75 °C |
DIN EN ISO 306 |
دمای نرمی ویکات VST/B50 |
≥ 20 Kg/m² |
≥ 20 Kg/m² |
DIN EN ISO 179,1eA |
مقاومت ضربه ای چارپی |
≥ 2000 N/mm² |
≥ 2200 N/mm² |
DIN EN ISO 178
DIN EN ISO 527-1-3 |
مدول الاستیسیته مدول خمشی Ef مدول کششی Et |
≥ 30 min |
|
DIN 53381-1 |
زمان پایداریtst |
آزمایشات مربوط به پروفیل تولیدی
1- شکل ظاهری و شرایط تولید
حین فرآیند تولید انواع سطح مقطع پروفیل ، تعداد نمونه های مشخصی جهت انجام آزمایشات از تولید اخذ می گردد. این نمونه ها پس از بررسی شکل ظاهری بمدت 12 تا 24 ساعت در آزمایشگاه نگهداری شده و سپس مورد تستهای مختلف طبق استاندارد RAL GZ 716/1 قرار می گیرد.سطوح خارجی پروفیل ها که در معرض دید قرار دارند لازم است دارای رنگ سفید یکنواخت بوده و عاری از هر گونه اجسام خارجی ، حفره ، ترک ، حباب و سایر معایب باشند .
2-مقاومت در برابر ضربه ناشی از سقوط جرم در دماهای پایین:(Impact resistance by falling mass at low temperature)
در این آزمایش ابتدا 10 نمونه cm 30 در دستگاه Freezer قرار داده و تا دمایc º 15به مدت حداقل یکساعت نگهداری می شوند سپس توسط جرم kg 1 از ارتفاع mm 1500 مورد تست ضربه قرار می گیرند . طبق استاندارد RAL نباید بیش از 10% از نمونه ها ( بیش از یک پروفیل ) شکسته شود.
3-رفتار پس از گرم شدن : (Behavior after heating)
cm 22 به مدت نیم ساعت در دمای ºc 150 گرم شده سپس در دمای محیط خنک می گردد و پس از انجام آزمایش نمونه باید فاقد هر گونه تغییر شکل ظاهری (اعم از چروک، ترک، …) باشد.
4-تست جرم واحد طول:
نمونه mm 250 با دقت mm 1 اندازه گیری شده و جرم آن با دقت gr 1 سنجیده می شود. جرم واحد محاسبه شده نباید کمتر از 95% مقدار اسمی آن طبق استانداردهای ارائه شده باشد.
5- برگشت حرارت: (Heat reversion)
سه مقطع پروفیل mm220 انتخاب و با دو خط به فاصله تقریبی mm 200 در دو سمت سطح به صورت عمود بر محور پروفیل نشان گذاری می شوند. این نمونه ها پس از نشانه گذاری در کوره با دمای ºc 100 به مدت یکساعت قرار میگیرد. و پس از خنک شدن در دمای محیط مجدداً نشانه ها اندازه گیری می شود. برای هر نمونه و هر جفت علامت، ضریب برگشت حرارت به درصد محاسبه می شود.
طبق استاندارد RAL جهت پروفیل های فرعی نباید درصد اختلاف برگشت حرارت بیش از 3% و برای پروفیلهای اصلی بیش از 2% باشد. ضمناً برای پروفیل های اصلی اختلاف درصد برگشت حرارت بین دو طرف سطح نیز نباید بیشتر از 4/0 % باشد.
6- تست ابعاد و هندسه پروفیل
ابعاد بیرونی و عملی سطح مقطع پروفیل ها همچنین ضخامت جداره های داخلی و هندسه پروفیل با استفاده از ابزارهای با دقت زیاد، اندازه گیری و با استانداردهای ارائه شده مقایسه می گردد.
7- تست کجی
به منظور اندازه گیری انحراف محور طولی پروفیل ، دو نمونه mm 1000 به صورت آینه وار روی یکدیگر قرار می گیرند و با وسیله اندازه گیری دقیق فاصله ایجاد شده در تمام محور طولی دو پروفیل اندازه گیری می شود. این انحراف نباید از mm 1 در کل طول یکمتر تجاوز کند.
8- تست جوش:
سطح مقطع های پروفیل پس از مرحله جوش به صورت نمونه در آزمایشگاه تحت تست جوش قرار می گیرند. بر اساس استاندارد RAL هر یک از این سطح مقطع ها باید تحت نیروی مشخصی که محاسبه شده است به مرحله شکست برسند و در صورتیکه زودتر از میزان نیروی تعریف شده پروفیل شکسته شود محموله تولیدی مردود شناخته خواهد شد.
تاریخچه پیدایش شیشه های دو جداره
استفاده از شیشه توسط رومی ها در حدود هزار سال قبل از میلاد مسیح رایج بوده است و استفاده عمومی از آن نیز به حدود 200 سال قبل باز می گردد که از آن زمان شیشه ها با ابعاد مختلف وارد زندگی عموم مردم گردیدند.
در سال 1865 میلادی صاحب یک مغازه شیشه فروشی در شهر نیویورک با ابتکار خویش حق ثبت و امتیاز بهره برداری از شیشه های عایق دوجداره غیر نفوذ در ایالت متحده را بدست آورد. او با مطالعه و آزمایش اثبات کرد که با استفاده از شیشه های دو جداره می توان از خروج گرما و سرمای داخل ساختمان به خارج جلوگیری کرد و هوای داخل محیط را بهتر محافظت نمود. پنجره های دارای دو یا چند جداره استاندارد، از اتصال دو یا چند شیشه که بطور موازی در مقابل یکدیگر برای روی یک چهارچوب پروفیل آلومینیومی قرارگرفته اند تشکیل شده است.
امروزه دیوارهای خشتی و گلی ستنی جای خود را به دیواره های شیشه ای مرتفع براق و درخشان داده اند . این سطوح زیبای رنگی به گونه ای طراحی و اجرا شده اند که بخوبی می توانند در برابر سرما و گرمای محیط خارجی مقاومت کرده و ضمن حفظ زیبایی محیط ، آسایش و اطمینان را برای استفاده کنندگان به ارمغان آورند.
در صنعت معماری نوین ، دیوارهای ساخته شده از جنس شیشه های رنگارنگ رفلکس مورد علاقه و توجه زیاد استفاده کنندگان قرارگرفته است.
فرایند تولید شیشه دو جداره
در ابتدا جامهای شیشه بوسیله دستگاه حمل بر روی رکهای دستگاه حمل اتوماتیک قرار گرفته و به تعدادی که اپراتور مشخص می کند به میز برش اتوماتیک انتقال می یابد . سپس اندازه شیشه های مورد نظر توسط نرم افزار بهینه سازی جهت به حداقل رساندن ضایعات توسط دستگاه طراحی و سپس برش داده می شود. شیشه ها پس از جداسازی به خط تولید شیشه دو جداره منتقل می شود ابتدا شیشه ها با آب سختی گیری شده بطور کامل شسته شده و پس از کنترل کیفی به مرحله بعدی منتقل می گردد.
به موازات مراحل مذکور فریم های ما بین دو جدار (Spacer) توسط دستگاه خم کن (Bending)بر اساس اندازه شیشه خم و برش داده میشود و داخل فریم از مواد رطوبت گیر پر می شود. سپس دو لبه فریم توسط دستگاه بوتیل چسب زده می شود که بمنظور درزگیری و قرار گرفتن اسپیسر مابین دو شیشه و چسبیدن آنها به یکدیگر می باشد. فریم ها جهت نصب روی شیشه انتقال می یابد شیشه ها پس از نصب فریم به دستگاه پرس منتقل می شود و همزمان گاز آرگون به صورت اتوماتیک به داخل شیشه دو جداره تزریق می شود سپس توسط روبات محیط شیشه دو جداره با چسب پلی سولفید به منظور درزبندی ثانویه پر می شود.
استاندارد تولید شیشه دو جداره
تولید شیشه دو جداره با توجه به شرایط موجود و نیازهای جامعه طبق استاندارد ملی ایران صورت میگیرد . در تدوین این استاندارد تا حد امکان استانداردهای کشورهای صنعتی پیشرفته و بین المللی لحاظ شده است . از جمله این منابع میتوان به موارد ذیل اشاره نمود :
1- ASTM E546-1988(Reapproved 1999)
2- Standard test method for frost point of sealed insulating glass units ASTM E773-2001
3-Standard test method for accelerated weathering of sealed insulating glass
4- CAN / CGSB 12.8 m.76
5- Insulating glass units
هدف از این استاندارد تعیین روش های آزمون ، شیشه های دو جداره به منظور بررسی و حصول اطمینان از کیفیت آنها می باشد .
جهت انجام آزمایشات نمونه هایی با ابعاد 350×500±5mm در نظر گرفته می شود .
حد اقل تعداد نمونه ها باید 20 عدد از یک محصول باشد .
کلیه نمونه ها باید حداقل به مدت 2 هفته در محیط آزمایشگاهی با دمای °c2±23 به صورت عمودی قرار گرفته باشند
عیت ظاهری آزمونه ها از لحاظ عدم وجود هرگونه خرابی ویا ترک خوردگی بررسی شود .
آزمونهای استاندارد شیشه های دو جداره
1- آزمون تعیین نقطه برفک
2- آزمون پایداری در برابر محیط هایی با رطوبت بالا
3- آزمون چرخه های آب و هوایی تسریع شده
4- آزمون مه گرفتگی
5- آزمون تعیین ضخامت محفظه هوا
6- آزمون تعیین ضخامت قطعه شیشه دوجداره
7- آزمون تعیین ابعاد شیشه دوجداره
افزودنی ها
با افزودن موادی مانند ضربهگیرها (Impact Modifiers ) ، کاهشدهندههای سرعت اشتعال یا متعادل کنندههای گرما (Heat Stabilizers )، پر کنندهها (Fillers )، کمک فرایندها (Processing Aids ) و روانکنندههای داخلی و خارجی (Internal & External Lubricants ) و در صورت نیاز رنگهای صنعتی (Pigments ) و اکسیـد تیتانیوم (Tio2 ) به نفت خام و نمک طعام ماده جدیدی بدست میآید که هر چند خمیر مایه آن PVC است لیکن خواص فیزیکی متفاوتی داشته و به آن ماده غیر پلاستیک یا UPVC اطلاق میشود.
Un plasticized Poly Vinyl Chloride که مختصرا UPVC نامیده می شود مادهای سخت است و در واقع یک نوع پلاستیک حرارت دیده (Thermo plats ) می باشد که در فرایند تولید، از طریق اکسترودر شدن به شکل مقاطع مختلف (Profiles ) در آورده می شود.
طیف وسیعی از محصولات را می توان با UPVC تولید نمود که برای نمونه می توان به پروفیل های قابل مصرف در ساخت درو پنجره، کرکره، کف پوش، سقف کاذب، کابلهای ایزوله، چرم مصنوعی، ورق PVC ، محافظ قرص، کیسه خون و سرم اشاره کرد.
در ساخت درو پنجره از جنس UPVC از پروفیل های مناسب که دارای غلظت بالای مواد متشکله هستند استفاده می شود تا استحکام کافی را داشته باشند.
UPVC بعلت داشتن امتیازات زیاد و خاص از اواخر دهه 60 وارد بازار شد و جای خود را در بازارهای جهانی پیدا نمود . در حال حاضر UPVC نسبت به سایر مواد پلیمری از امتیازات بالاتری برخوردار بوده ودرصد مصرف بیشتری را به خود اختصاص داده است ( بیش از 60% از سهم بازار).
تاریخچه پیدایش درب و پنجره های UPVC و شیشه دو جداره
ساخت درب و پنجره های UPVC حدوداً درسال 1960 میلادی در اروپا آغاز گردید.با پیشرفت تکنو لوژی و افزایش هزینه تولید درب و پنجره چوبی ،آهنی و آلمینیومی استفاده از درب و پنجره های UPVC رونق روز افزون یافته است.سهولت ایجاد تنوع در طرح ورنگ و استقامت فیزیکی و پایداری در برابر شرایط جوی متفاوت وهمچنین قابلیت با ز یافت بودن UPVC به کار رفته در ساخت این نوع درب و پنجره موجب تحولات عمده ای در این صنعت گردیده است .
تاریخچه تولید درب و پنجره های UPVC در ایران
در ایران اولین بار در اواخر دهه 50 واحد تولید پروفیل و ساخت درب وپنجره UPVC حد فاصل شهرستان های بندرانزلی و رشت احداث گردیدو با این که در سال های بعد واحدهای تولیدی دیگری در این زمینه احداث گردیده است.لیکن به دلایل مختلف واحدهای موجود از تکنولوژی کنونی بر خوردار نبوده و حجم عمده پروفیل مصرفی واحدهای مونتاژ از منابع خارجی تامین می گردد.امروزه در کشورهای اروپائی بیش از 75% سهم بازار درب وپنجره متعلق به پنجره های UPVCمی باشد به طوری که به عنوان مثال در سال 1997 حدود 84 میلیون پنجره UPVCدر اروپا فروخته شده است .
ویژگیهای درو پنجرههای UPVC
1- استحکام
2- زیبایی فوقالعاده
3- صرفه جوئی در مصرف انرژی تا 40%
4- کاهش آلودگی صوتی تا میزان
5- پائین بودن ضریب انتقال حرارتی
6- حفظ محیط زیست از طریق بازیافت
7- مانع ورود گردو غبار و دود و گازهای موجود از محیط بیرون به داخل
8- مقاوم در برابر شرایط مختلف آب و هوایی
9- مقاوم در مقابل نفوذ اشعه ماوراء بنفش خورشید
10- عدم اشتعال در هنگام آتش سوزی و حریق
11- مقاوم در برابر زنگ زدگی ،خوردگی و رطوبت هوا
12- ایمن در برابر سرقت
13- بی نیاز به صرف هزینه رنگ آمیزی
14- تنوع در طرح و تطابق با هر نوع معماری
15- تنوع در رنگ
16- نظافت راحت و آسان
17- نصب آسان
18- ثبات رنگ در برابر اشعه خورشید
19- مقاوم در برابر عوامل خوردگی – اسیدها و بازها و موارد شیمیایی
20- مقرون به صرفه
21- تنوع در طرح و نوع بازشوها
22- تقویت مضاعف با استفاده از پروفیل گالوانیزه
23- عدم نیاز به سرویسهای مکرر
24- قابلیت استفاده از روکشهای رنگی
25- قابلیت بازیافت
صرفه جوئی در مصرف انرژی
با توجه به اعلام تحقیقات سازمان بهینه سازی مصرف سوخت در ایران در حدود 45% از اتلاف انرژی از طریق پنجره های صورت می گیرد.
لوله پلی اتیلن جهت مصارف گازرسانی
لوله و اتصالات پلی اتیلن برای مصارف گازرسانی باعث کاهش هزینه و زمان اجرای پروژه های گازرسانی در سطح کشور شده است.
آغاز استفاده از لولههاي پلاستيکي تحت فشار، از اوايل سال 1950 ميلادي بوده است. از جمله کاربريهاي اين لولهها، انتقال آب، مواد شيميايي، سيالات خنک کننده و گرم کننده، گازها، هواي فشرده و سيستمهاي آتش نشانی، چه در روي زمين و چه در زير زمين است.يکي از اولين موارد کاربرد پلي اتیلن (با دانسيته متوسط) در زمينه انتقال گاز بوده است كه از سال 1960 ميلادي مورد استفاده قرار گرفته است. در حال حاضر بيش از 90% خطوط انتقال گاز ايالات متحده و کانادا از مواد پلاستیکی است که 99% آن نيز از جنس پلي اتیلن است. لوله های پلي اتیلن در شبکه هاي انتقال گاز نه تنها در آمريکاي شمالي، بلکه در سرتاسر جهان استفاده ميشوند.
مزاياي استفاده از لوله های پلي اتیلن گازي :
1- قابلیت اتصال آسان
لوله پلي اتیلن قادر به اتصال جوشي است, به طوري که اتصالات به وجود آمده نه تنها به استحکام خود لوله هستند، بلکه در برخي موارد از خود لوله نيز مستحکمتر ميباشند. از آنجاييکه عمده نقطه ضعف خطوط تحت فشار محل اتصالات است، ميتوان نتيجه گرفت که اتصالات پلي اتیلن در مقايسه با ساير مواد از استحکام مناسبتري برخوردارند.
2- قابلیت انعطاف
لوله پلي اتیلن تا حدود 25 برابر قطر لوله قابل خم شدن است. اين مسأله باعث ميشود در بسياري از موارد براي تغيير زاويه خط لوله نيازي به استفاده از اتصالات نباشد.از سوي ديگر انعطاف پذيري پلي اتيلن استفاده از آن را در مناطق زلزله خيز توجيه پذيرتر ميکند.
3- مزایای نصب
روشهاي نصب بي نظيري که به خاطر انعطاف پذيري و اتصالات بدون نشتي لوله های پلي اتیلنی قابل استفادهاند، استفاده از اين لولهها را در مقايسه با لولههاي فولادي از نظر اقتصادي و فني توجيه پذير ميکند و باعث ميشوند مقدار زيادي در هزينه و زمان صرفه جويي شود.
4- مقاومت در مقابل خوردگي و اثر مواد شيميايي:
لوله پلي اتیلن از مقاومت شيميايي بسيار خوبي برخوردارند و در مقابل ترکيبات فعال گاز و ساير ترکيبات شيميايي بسيار مقاوم ميباشند.
5- عمر طولاني، دوام و کاهش هزينه ها:
عمر کاري لوله های پلي اتیلن بين 50 تا 100 سال برآورد ميشود و اين به معناي کاهش هزينههاي جايگزيني براي طولاني مدت است.از سوي ديگر هزينه كارگزاري ، نصب و نگهداري اين محصول نسبت به ساير محصولات بسيار توجيه پذير و پايين ميباشد.
استانداردها و آزمونها
آزمونهايي که در کنترل کيفي لولههاي مورد استفاده در انتقال گاز انجام مي شوند، به سه گروه تقسيم ميشوند:
1- آزمونهاي بعد از توليد (BRT):به آزمونهايي مي گويند که قبل از ترخيص هر دسته از توليدات روي آنها انجام مي شود تا از کيفيت توليد اطمينان حاصل شود.
2- آزمونهاي تأييد فرايند (PVT):به آزمونهايي اطلاق مي شود که جهت بررسي کيفيت و پيوستگي خط توليد در فواصل زماني خاص بر روي مواد، اجزا و يا مجموعه انجام ميشود.
3- آزمونهاي نوعي (TT):به آزمونهايي ميگويند که براي اثبات احراز تأييديههاي مورد نظر استاندارد در مورد مواد، اجزا و توانايي مجموعه انجام ميشود.
پلی اتیلن چیست؟ تاریخچه پلی اتیلن، انواع پلی اتیلن و مزایای آنها
پلی اتیلن یا پلی اتن یکی از سادهترین و ارزانترین پلیمرها است.
پلی اتیلن جامدی مومی و غیر فعال است. این ماده از پلیمریزاسیون اتیلن بدست میآید و بطور خلاصه بصورت PE نشان داده میشود.
مولکول اتیلن ( C2H4 ) دارای یک بند دو گانه C=C است. در فرایند پلیمریزاسیون باند دو گانه هر یک از مونومرها شکسته شده و بجای آن پیوند سادهای بین اتمهای کربن مونومرها ایجاد میشود و محصول ایجاد شده یک درشتمولکول است.
تاریخچه تولید پلی اتیلن
پلی اتیلن اولین بار بطور اتفاقی توسط شیمیدان آلمانی “Hans Von Pechmanv” سنتز شد. او در سال 1898 هنگام حرارت دادن دی آزومتان ، ترکیب مومی شکل سفیدی را سنتز کرد که بعدها پلی اتیلن نام گرفت.
اولین روش سنتز صنعتی پلی اتیلن بطور تصادفی توسط “ازیک ناوست” و “رینولرگیسون” ( از شیمیدانهای ICI ) در 1933 کشف شد. این دو دانشمند با حرارت دادن مخلوط اتیلن و بنزالدئید در فشار بالا ، مادهای موممانند بدست آوردند. علت این واکنش وجود ناخالصیهای اکسیژندار در دستگاههای مورد استفاده بود که بعنوان ماده آغازگر پلیمریزاسیون عمل کرده بود. در سال 1935 “مایکل پرین” یکی دیگر از دانشمندهای ICI این روش را توسعه داد و تحت فشار بالا پلی اتیلن را سنتز کرد که این روش اساسی برای تولید صنعتی LDPE در سال 1939 شد.
استفاده از انواع کاتالیزورها در سنتز پلی اتیلن
اتفاق مهم در سنتز پلی اتیلن، کشف چندین کاتالیزور جدید بود که پلیمریزاسیون اتیلن را در دما و فشار ملایمتری نسبت به روشهای دیگر امکانپذیر میکرد.
اولین کاتالیزور کشف شده در این زمینه تری اکسید کروم بود که در 1951 ، “روبرت بانکس” و “جان هوسن” در شرکت فیلیپس تپرولیوم آنرا کشف کردند. در 1953، “کارل زیگلر” شیمیدان آلمانی سیستمهای کاتالیزور شامل هالیدهای تیتان و ترکیبات آلی آلومینیومدار را توسعه داد. این کاتالیزورها در شرایط ملایمتری نسبت به کاتالیزورهای فیلیپس قابل استفاده بودند و همچنین پلی اتیلن یک آرایش (با ساختار منظم) تولید میکردند. سومین نوع سیستم کاتالیزوری استفاده از ترکیبات متالوسن بود که در سال 1976 در آلمان توسط “والتر کامینیکی” و “هانس ژوژسین” تولید شد.
کاتالیزورهای زیگلر و متالوسن از لحاظ کارکرد بسیار انعطافپذیر هستند و در فرایند کوپلیمریزاسیون اتیلن با سایر اولفینها که اساس تولید پلیمر های مهمی مثل VLDPE و LLDPE و MDPE هستند، مورد استفاده قرار میگیرند.
اخیرا کاتالیزوری از خانواده متالوینها با قابلیت استفاده بالا برای پلیمریزاسیون پلی اتیلن به نام زیرکونوسن دی کلرید ساخته شده است که امکان تولید پلیمر با ساختار بلوری (تک آرایش) بالا را میدهد. همچنین نوع دیگری از کاتالیزورها به نام کمپلکس ایمینوفتالات با فلزات گروه ششم مورد توجه قرار گرفته است که کارکرد بالاتری نسبت به متالوسنها نشان میدهند.
تاریخچه پلی اتیلن
كلمه پليمر از كلمه يونانى( پلى ) به معناى چند و ( مر ) به معناى واحد و يا قسمت بوجود آمده است . پلیمرها را اشتباها رزين ، الاستومر و پلاستيك نيز مىنامند.
در حالى كه پلاستيك تنها يك صفت است كه براى مواردى به كار مى رود كه قابليت تغيير شكل بر اثر فشار را دارا هستند و اغلب اشتباها به عنوان يك كلمه اصلى براى صنایع پلاستیک و توليدات آن به كار مى رود.
اولين بار كلمه پليمر توسط شيمى دانى به نام رنالت در سال 1835، به كار رفت و اولين كاربرد تجارى مواد پليمرى در سال 1834 با كشف كائوچو آغاز شد.
لكن اولين پلاستيك مصنوعى با نام نيترات سلولز در سال 1862 كشف و در سال 1868 وارد بازار شد.
نايلون در سال 1938، پلی اتیلن در سال 1942، پلی پروپیلن در سال 1957،پلى بوتيلن درسال 1974و پليمرهاى كريستال مايع براى ساخت اجزاى الكترونيكى در سال 1985رايج گرديدند.
پليمرها به سه نوع پلیمرهاى طبيعى ، طبيعى اصلاح شده و مصنوعى تقسيم مى شوند.
اولين پلاستيكهاى صنعتى مدرن حدود 100سال پيش رواج يافتند ولى در دهه هاى اخير رشد فزاينده و گوناگونى در صنايع به وقوع پيوست .
حدود 60پليمر بسيار مهم تاكنون به بازار عرضه شده كه مشتقات آنها به بيش از 2000مورد مى رسد و كماكان در حال افزايش است. پلى اولفينها پلیمرهاى گرما نرم با خواص تقريبا مشابه و فرمولاسيون نزديك به هم هستند كه انواع معروف آنها پلی اتیلن ها، پلی پروپیلن ها و پلى بوتيلن ها مى باشند كه در صنايع لوله،كاربرد فراوانترى دارند.
بررسی انواع مختلف پلی اتیلن ها و مزایای هر یک نسبت به دیگری
با يك نگاه به جدول زير متوجه میشويد از نظر انبساط، مقاومت در برابر حلالها، مقاومت كششى، مقاومت فشردگى، و مقاومت حرارتى و نفوذ پذيرى گازى پپلی پروپیلنها امتياز بيشترى نسبت به پلی اتیلنها داشته و به علت مقاومت حرارتى و مقاومت كششى پلى پروپيلنها از پلى بوتيلنها بهتر هستند. اين موارد از جمله مهمترين مواردى هستند كه در صنعت لوله كشى آب سرد گرم مورد نظر مى باشند و باعث امتياز پلى پروپيلن ها مى شوند. البته در اين ميان لوله هاى با تركيب پليمر و آلمينيوم نيز توليد شدند كه به دليل گرانى و اتلاف حرارتى و … به علت وجود فلز در آنها زياد مورد استقبال قرار نگرفت.
پلی پروپیلن ها |
پلى بوتلين ها |
پلی اتیلن ها |
ازنظر |
مقاومت شيميايى
بسيارخوب |
مقاومت شيميايى
بسيار خوب |
مقاومت شيميايى
بسيار خوب |
شيميايى |
ارزان بدون فن آورى
تا حدى گران با فن آورى |
تا حدى گران |
قيمت ارزان و موجود بودن در
انواع قابل مصرف |
هزينه |
26 حد اكثر |
———————— |
50 حد اكثر |
انبساط حرارتى |
مورد حمله |
مورد حمله |
مورد حمله |
اسيدهاى اكسيد كننده |
مي شكند لكن تثبيت مي گردد |
خرد مي شود |
تثبیت کننده دارد |
اثر نور خورشيد و اشعه ماوراى بنفش |
آرام |
سريعاً ميسوزد |
آرام |
سرعت اشتعال |
مقاوم تا
80 درجه سانتيگراد |
مقاوم |
مقاوم تا
60 درجه سانتيگراد |
در برابر حلالها |
مقاوم |
مقاوم |
مقاوم |
در برابر بازها |
31-62 |
26-30 |
4-38 |
مقاومت كششى |
38-55 |
————————– |
19-25 |
مقاومت فشردگى |
0/025-0/25 |
نمي شكند ( كاملاً ارتجاعى ) |
25-1
مانند شلنگ نمي شكند |
ضربه پذيرى ايزود |
85-110 راك ول |
55-65 شر |
41-70 راك ول |
سختى |
قابل استفاده در لوله كشى گاز |
————————– |
غير قابل استفاده در خلاء |
نفوذ پذيرى گازى |
110-160 |
کمتر از 110 |
80-120 |
مقاومت حرارتى (درجه سانتيگراد) |
Recent Comments