پلی الفین

اکسترودر

Posted by roueen in اکسترودر تک مارپیچ on June 20, 2015 with Comments Off on اکسترودر

اکسترودر

نام انگلیسی: Extruder

اکستروژن یکی از روش های شکل دهی است که برای کاهش ضخامت یا سطح مقطح مواد به کار میرود. اکستروژن روشی بسیار انعطاف پذیری است و با استفاده از حدیده مناسب می توان طیف وسیعی از تولیدات را تهیه کرد. به عنوان مثال: تولید دانه گونه Granule production، تولید پروفیل Profile production، تولید ورقه های بسیار نازک به طریقه دمشی Film blowing، قالبگیری دمشی Blow Molding.اکسترودر یعنی مجموعه محفظه و ماردون که می توان به عنوان بدنه و واحد اصلی تولید قطعاتی با اشکال مختلف به کاربرد. اکسترودرها به دودسته اکسترودر تک ماردونهواکسترودر دو ماردونه تقسیم بندی می شوند. اکسترودر ماردونه سه قسمت مجزا دارد ناحیه تغذیه Feed Zone. ناحیه تراکم و فشردگی Compression Zone و ناحیه اندازه گیری و سنجش.
یکی از مهمترین ویژگی پلیمرها و به ویژه پلاستیک ها سهولت شکل پذیری آنهاست . در بعضی حالات، قطعات نیمه کاملی نظیر ورقه ها یا میله های تولید شده، متعاقباً با استفاده از روشهای متداول ساخت، مانند جوشکاری یا ماشین کاری به قطعه نهایی تبدیل می شود. اما در بسیاری مواقع، قطعه نهایی، علیرغم برخورداری از شکلی کاملاً پیچیده، طی یک مرحله تولید می شود. عملیات حرارت دادن، شکل دادن و خنک کردن ممکن است( مانند تولید لوله به روش اکستروژن) به دنبال یکدیگر و بدون وقفه (Continuous) انجام شود و یا ممکن است طی مراحلی ناپیوسته، زمانگیر و تکرار شونده( مثل عملیات تولید تلفن خانگی به روش قالبگیری تزریقی) صورت پذیرد که در اکثر موارد، فرایند به طور خودکار انجام شده برای تولید انبوه بسیار مناسب است . طیف وسیعی از روشهای شکل دهی برای پلاستیک ها و پلیمرهای شکل پذیر کاربرد دارد. در بسیاری از حالات انتخاب روش به چگونگی شکل نهایی قطعه و گرما نرم یا گرما سخت بودن ماردون بستگی دارد . بنابراین در عملیات طراحی، آگاهی طراح از روش های متنوع شکل دهی، حائز اهمیت است زیرا اشکال ناجور و نامناسب قطعه و یا مسائل جزئی کار طراحی، ممکن است محدودیت هایی در انتخاب روش قالبگیری برای طراح ایجاد کند. دسته بندی اکسترودرهای متداول این دسته بندی شامل گونه های زیر می شود.

اکسترودر تک ماردونه
نام انگلیسی: One Screw Extruder
یکی از متداولترین روشهای شکل دهی پلاستیک ها، اکستروژن است که از یک ماردون در داخل محفظه ای تشکیل شده است. پلاستیک ها معمولاً به صورت دانه ای شکل یا خاکه نرم از قیف به ماردونه تغذیه می شود . آنگاه در حال حمل به وسیله ماردون در طول محفظه، در اثر هدایت حرارت از طرف گرم کننده های محفظه (Barrel Heaters) و برش ناشی از حرکت بر روی لبه های ماردون گرم می شود . عمق معبر (Channel-Depth) در طول ماردون کاهش یافته موجب فشرده شدن مواد می شود . در انتهای محفظه اکسترودر، مذاب با عبور از حدیده ای به شکل مورد نظربرای محصول نهایی در می آید.همانطورکه بعدا خواهیم دید، به دلیل امکان استفاده از حدیده های مختلف، اکسترودر یعنی مجموعه محفظه و ماردون را می توان به عنوان بدنه و واحد اصلی تولید قطعاتی با اشکال مختلف به کاربرد اکسترودر ماردونه سه قسمت مجزا دارد:

الف) ناحیه تغذیه (Feed Zone): کار این ناحیه، دادن گرمای اولیه به پلاستیک و انتقال آن به نواحی بعدی است . طراحی این ناحیه حائز اهمیت است. زیرا عمق ثابت ماردون طوری انتخاب شود که مواد لازم و کافی را به ناحیه اندازه گیری (Metering Zone) تغذیه کند؛ به طوری که نه دچار گرسنگی شود و نه در اثر زیاد بود ن مواد، لبریز و پس زده شود. طراحی مناسب (Optimum) و متعادل، به طبیعت و شکل مواد تغذیه شونده (Feedstock) ،شکل هندسی (Geometry) ماردون و خواص اصطکاکی پلاستیک نسبت به ماردون و محفظه بستکی دارد . رفتار اصطکاکی مواد تغذیه شده، تاثیر قابل توجهی بر آهنگ ذوب شدن مواددارد.

ب) ناحیه تراکم و فشردگی (Compression Zone): در این ناحیه، عمق ماردونه به تدریج کاهش می یابد که موجب متراکم شدن و فشردگی پلاستیک می شود. این فشردگی دو نقش عمده ایفا می کند؛ یکی آنکه هوای محبوش در داخل مواد را به ناحیه تغذیه می راند و دیگر آنکه انتقال حرارت را با کاهش دادن ضخامت مواد بهبود می بخشد.

ج) ناحیه اندازه گیری و سنجش: در این ناحیه، عمق ماردونه یکسان و ثابت، اما بسیار کمتر از عمق ناحیه تغذیه است. در این ناحیه، مذاب به صورت همگون و یکنواخت در می آید به طوری که با آهنگ ثابتی، در درجه حرارت و فشار یکسان و ثابت، به حدیده تغذیه می شود. این ناحیه به سهولت و سادگی تحلیل و ارزیابی می شود؛ زیرا مشتمل بر جریان مذاب گرانروان در داخل مجرایی با عمق و ابعاد ثابت است.
طول نواحی سه گانه ماردون خاص، بستگی به ماده ای دارد که تحت اکستروژن قرار می گیرد . برای نمونه نایلون خیلی سریع ذوب می شود، به طوری که تراکم و فشردگی مذاب در طول یک گام از ماردون نیز قابل تامین است. اما پلی وینیل کلراید، به حرارت بسیار حساس است و لذا طول ناحیه فشردگی برای آن برابر با طول ماردون است. از آنجا که پلاستیک ها دارای گرانروی های متفاوت هستند، رفتار آنها در خلال اکستروژن نیز متفاوت است.

آهنگ وزنی خروجی واقعی 25 % با آنچه نشان داده شده اختلاف نشان می دهد که بستگی به دما، سرعت ماردون و غیره دارد. در اکسترودرهای تجاری، نواحی اضافی برای بهبود کیفیت محصول به ماردون افزوده می شود. به عنوان نمونه، ناحیه اختلاطی (Mixing Zone) مشتمل بر پلکان هایی (Flights) با گام کمتر یا معکوس، به منظور کسب اطمینان از یکنواختی مذاب و کافی بودن آن در منطقه اندازه گیری، استفاده می شود .
برخی از اکسترودرها ناحیه هواگیری(منفذ خروج هوا) وجود دارد. وجود این ناحیه به این دلیل است که برخی پلاستیک ها جاذب رطوبت(Hygroscopic)  هستند یعنی از محیط اطراف خود رطوبت جذب می کنند و اگر به همین صورت مرطوب در اکسترودر فاقد ناحیه هواگیری استفاده شوند، کیفیت محصول نهایی خوب نیست؛ زیرا در داخل مذاب، بخار آب محبوس می شود . برای رفع این مشکل راه حل آن است که مواد تغذیه شونده به اکسترودر را قبلاً خشک کنیم. این روش گران و پر هزینه است و امکان آلودگی نیز در مواد ایجاد می کند. روش دوم، استفاده از محفظه های منفذدار (Vented Barrels) است . در اولین قسمت ماردون، مواد که به صورت دانه بندی است، پس از ورود ذوب شده، سپس به طریق معمول فشرده و همگن می شود. آنگاه با ورود به ناحیه غیر فشردگی (Decompression-Zone) ،فشار مذاب به محیط کاهش می یابد؛ این عمل، امکان خروج و گریز بخار و سایر مواد فرار از داخل مذاب را از طریق منفذ تعبیه شده در بدنه اکسترودر فراهم می کند. آنگاه مذاب در طول محفظه به ناحیه دوم فشردگی هدایت می شود تا از محبوس شدن هوا در مذاب ممانعت به عمل آید. دلیل دفع بخار این است که در دمایی برابر با 250 درجه سانتیگراد، بخار آب موجود در پلاستیک مذاب دارای فشاری برابر 4 MN/m2 است که موجب خروج آسان آن از مذاب و گریز از منفذ خروج می شود . توجه کنید که چون فشار محیط تقریباً 0.1 MN/m2 است، استفاده از مکش خلاء (Vacuum) در منفذ خروجی، اثر ناچیزی در خروج بخار و مواد فرار دارد. یکی دیگر از اجزای مهم اکسترودر، صافی (Gauze Filter) پس از ماردون و پیش از حدیده است. این صافی به صورت کاملاً موثری هرگونه مواد ناهمگون و ناخالص یها را از مذاب جدا می کند . عدم وجود آن حتی ممکن است موجب انسداد حدیده گردد. این صفحات صاف و غربال کننده معمولاً مذاب را تا مقیاس 120 تا 150 mصاف و تصفیه می کنند. اما شواهد موجود نشان می دهد که ذراتی کوچکتر از مقیاس فوق، موجب شروع ایجاد ترک های مویین در تولیدات پلاستیکی نظیر لوله های تحت فشار پلی اتیلنی می شود . برای چنین مواردی صافی های بسیار ظریفی در مقیاس 45 mبه کار می رود که به گونه ای موثر و جالب توجه، کیفیت و عمر مفید محصول را بهبود می بخشد. از آنجا که این صافی های ظریف آسیب پذیر است، توسط صفحه سرعت شکنی (Breaker plate) هدایت می شود. این صفحه تعداد زیادی سوراخهای مماس بر یکدیگر و بسیار تنگاتنگ دارد که بدون اینکه به ذرات جامد سوخته (Dead-Spots) احتمالی همراه با مذاب اجازه ورود دهد، مذاب را عبور می دهد. این صفحه سرعت شکن همچنین جریان مذابی را که پس از خروج به صورت حلزونی در آمده است خطی می کند. چون منافذ این صافی های ظریف به تدریج بسته می شود، پی در پی باز شده، تعویض می شود . در بسیاری از اکسترودرهای پیشرفته با صافی های ظریف، کار تعویض آنها بدون نیاز به توقف اکسترودر صورت می گیرد . همچنین باید خاطر نشان کنیم که اگرچه این وظیفه اصلی صفحه سرعت شکن و صاف نیست؛ اما به ایجاد فشار معکوسی که موجب بهبود اختلاط مذاب می شود کمک می کند. چون فشار در حدیده حائز اهمیت است، شیری (valve) پس از صفحه سرعت شکن در اکسترودر وجود دارد که امکان تنظیم لازم را فراهم می آورد. چگونگی جریان (Mechanism of flow) پلاستیگ با حرکت در طول ماردون به صورت زیر ذوب می شود. نخست لایه نازکی (Thin Film) از ماده مذاب در جداره محفظه تشکیل می شود. با چرخش ماردون این لایه از جداره محفظه کنده شده به قسمت جلوی پیکان ماردون انتقال می یابد و وقتی که به سطح خود ماردون (Core of screw) می رسد، دوباره به طرف بالا جاروب می شود. بدین ترتیب حرکت چرخشی در جلوی پیکان ماردون(پیشانی ماردون) به وجود می آید . در آغاز، پلکان ماردون حاوی دانه های جامد است که در اثر حرکت چرخشی به داخل حوضچه مذاب جاروب می شود. با استمرار چرخش ماردون، مواد بیشتری به داخل حوضچه مذاب ریخته می شود. تا اینکه در نهایت فقط مواد مذاب است که پلکانهای ماردون اکسترودر وجود دارد. در اثنای گردش ماردون در داخل محفظه، حرکت مواد در راستای طول ماردون بستگی به چسبندگی مواد به ماردون یا محفظه دارد. به طور نظری در مرز افراط و تفریط (Extremes) وجود دارد. در یکی فقط مواد به درون ماردون چسبیده است، در نتیجه ماردون و مواد مانند استوانه توپر و جامدی در داخل محفظه می چرخد. در این حالت نامناسب هیچ خروجی وجود ندارد . در حالت دوم، مدار روی ماردون می لغزد و مقاومت زیادی در برابر گردش ماردون در داخل محفظه به وجود می آورد. در این حالت حرکتی در جهت محور دستگاه برای مذاب فراهم می شود که بهترین حالت ممکن است. در عمل، رفتار واقعی، حالتی بین دو واحد است زیرا مواد هم به ماردون و هم به بدنه اکسترودر می چسبد. خروجی مناسب ناشی از به وجود آمدن جریان کشنده و جلو برنده ای (Drag flow) در اثر چرخش ماردون و سکون محفظه است که به حرکت سیال گرانروان بین دو صفحه موازی شباهت دارد که در آن صفحه ای ثابت و صفحه دیگر دارای حرکت است. علاوه بر این، جریان دیگری هم ناشی از اختلاف فشار بین دو انتهای ماردون است وجود دارد وبه این دلیل که حداکثر فشار در انتهای اکسترودر به وجود می آید، جریان فشاری (Pressure flow) خروجی را کاهش می دهد. همچنین به دلیل فاصله (Clearance) که بین پلکانهای ماردون و بدنه اکسترودر وجود دارد اجازه نشتی به مواد در جهت عکس امتداد ماردون داده، به طور موثری خروجی گاز را کاهش می دهد . فرار و گریز مواد به سمت عقب ماردون در حالتی که ماردون فرسوده (Worn) باشد بیشتر است. گرما یا سرمای خارج اکسترودر نیز نقش مهمی در نحوه ذوب شدن مواد ایفا می کند. در اکسترودرهایی که دارای خروجی زیادی هستند، مواد، طول محفظه اکسترودر را سریع می کند. در نتیجه گرمای ذوب شدن کامل در اثر عمل برش تولید می شود و به استفاده از حرارت دهنده های خارجی محفظه اکسترودر نیازی نیست. بنابراین در این حالت اگر گرمای زیادی در مذاب به وجود آمده باشد سرد نگه داشتن محفظه حائز اهمیت است . در برخی مواقع خنک کردن ماردون اکسترودر نیز لازم است که البته اثری بر درجه حرارت مذاب ندارد . اما اثر مالشی(اصطکاکی ) بین پلاستیک و ماردون را کاهش می دهد . در همه اکسترودرها خنک کردن محفظه اکسترودر در ناحیه تغذیه ضروری است و لازم است تا بتوان اطمینان کاملی از تغذیه بدون درد سر مواد به اکسترودر به دست آورد. طبیعت و حالت گرمایی مذاب در اکسترودر با دو حالت ترمودینامیکی مقایسه می شود. اولی حالت بی دررو(Adiabatic) است؛ به این مفهوم که سیستم کاملاً مجزا از محیط خارج است و هیچ جذب و دفع حرارتی در آن رخ نمی دهد. اگر این حالت مطلوب در اکسترودر حاکم نباشد، فقط مقداری کار لازم است روی مذاب انجام شود تا گرمای معین تولید کند که به ازاء آن هیچ ضرورتی به گرم یا سرد کردن دستگاه نباشد . حالت مطلوب دوم، به همدما (Isothermal) موسوم است که در این حالت، درجه حرارت در تمام نقاط مذاب یکسان است و در نتیجه محفظه به گرم کردن و سرد کردن مستمر و دائمی برای جبران هرگونه اتلاف یا اخذ حرارت از مذاب برای ثابت ماندن دما نیاز دارد. در عمل، عملیات حرارتی در اکسترودرها بین دو حالت مرزی فوق قرار دارد. اکسترودرها ممکن است بدون هیچ حرارت دهنده یا سرد کننده خارجی کار کنند. لیکن در واقع در این صورت بی در رو نیست؛ زیرا اتلاف حرارت به وقوع می پیوندد. از طرف دیگر با حالت همدما در تمام طول اکسترودر مواجه نیستیم زیرا دانه های جامد نسبتاً سردی به اکسترودر تغذیه می شود . اما برخی از نواحی اکسترودر ممکن است خیلی نزدیک به حالت همدما باشد. معمولاً ناحیه انداره گیری در بحث و تحلیل همدما در نظر گرفته می شود. در حالت کلی: جریان خروجی از اکسترودر را برآیند سه مولف می دانیم جریان جلو برنده و کشنده جریان فشاری جریان نشتی (Leakage flow)

اکسترودر دو ماردونه
نام انگلیسی: Two Screw Extruder
مشخصه های عمومی اکسترودر دوماردونه در سالهای اخیر استفاده از اکسترودرهای دوماردونه که در داخل محفظه داغ اکسترودر حرکت چرخشی دارد، افزایش یافته است. این دستگاه ها در مقایسه با اکسترودرهای تک ماردونه تفاوتهایی در آهنگ خروجی، بازده اختلاط، حرارت تولید شده و نظایر آن نشان می دهد . خروجی اکسترودر دوماردونه معمولاً سه برابر اکسترودر تک ماردونه ای با همان قطر و سرعت است. اگرچه اصطلاح ماردون دوقلو اصطلاحی بین المللی برای اکسترودرهای دو ماردونه است؛ اما دو ماردون لزوماً یکسان نیستند. در واقع انواع گوناگونی از این دستگاه موجود است . برخی از آنها را که دارای ماردون هایی با گردش در جهت مخالف یا موافق یکدیگر است نشان می دهد و به علاوه ماردونها ممکن است به صورت جفت شده (Conjugated) یا جفت نشده (Non-Conjugated) باشند. در حالت جفت نشده، بین پلکان های ماردون فضای خالی وجود دارد که امکان حضور مواد را نیز فراهم می کند. در اکسترودر دو ماردونه ای با جهت چرخش مخالف یکدیگر، مواد دچار برش و فشردگی می شوند(نظیر آنچه در غلتکرانی رخ می دهد) یعنی مواد بین غلتک هایی با جهت چرخش متفاوت، فشرده می شود . دراکسترودر حاوی دو ماردون با جهت چرخش یکسان، مواد از یک ماردون به دیگری منتقل می شود. این گونه آرایش برای مواد حساس به حرارت کاملاً مناسب است؛ زیرا مواد در اکسترودر به سرعت منتقل می شود بدون اینکه کمترین احتمال ماندگار شدن موضعی (Entrapment) مواد وجود داشته باشد. حرکت مواد در اطراف ماردون های جفت نشده کمتر(کندتر) است ولی نیروی جلوبرنده (Propulsive) بزرگتر است.

روش های شکل دهی با استفاده از اکسترودر
اکستروژن روشی بسیار انعطاف پذیری است و با استفاده از حدیده مناسب می توان طیف وسیعی از تولیدات را تهیه کرد. برخی از این روش های بسیار متداول را در اینجا ذکر می کنیم:
– تولید دانه گونه (Granule production)
– تولید پروفیل (Profile production)
– تولید ورقه های بسیار نازک به طریقه دمشی (Film blowing)
– قالبگیری دمشی (Blow Molting)

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

خط پروفیل اکسترودر اتریشی

سیلندر و مارپیچ – طراحی مارپيچ در قالب گیری تزریقی

Posted by roueen in اکسترودر تک مارپیچ on June 19, 2015 with Comments Off on سیلندر و مارپیچ – طراحی مارپيچ در قالب گیری تزریقی

سیلندر و مارپیچ – طراحی مارپيچ در قالب گیری تزریقی

در این مقاله تفاوت‌های مشاهده شده بین فرآیند پلاستیک‌ها در صنایع اکستروژن و قالب‌گیری تزریقی مورد بررسی قرار گرفته‌اند. ملزومات برای فرآیند کردن یک پلاستیک در قالب‌گیری تزریقی مشابه اکستروژنی است، اما بسیاری از عبارات متفاوتند. برای مثال سرعت توليد در اکستروژن در مدل آمريكائي به صورت pph/rpm و در تزریق به صورت oz/sec تعریف می شود. البته تفاوت اولیه این دو فرآیند این است که فرايند اکستروژن پیوسته و فرايند تزریق به صورت آغاز-ايست است. از آنجائی‌که فرايند اکستروژن پیوسته است، بررسی کیفیت ماده‌ی فرآیند شده راحت‌تر از تزریق است. سامانه‌های اکستروژنی به طور طبیعی و با دقت، فشار مذاب، دمای مذاب و آمپراژ را نشان می‌دهند. اندازه محصول پایانی به صورت پیوسته تا هزارم یک اینچ و یا حتی بهتر اندازه‌گیری می‌شود. با چنین مشاهده‌ی پیوسته‌ای، مشکلات کیفی به سرعت مشخص می‌شوند. کیفیت ماده‌ی خروجی از سيلندر در قالب گیری تزریقی معمولا هنگامی مورد توجه قرار می‌گیرد که بين قطعات تفاوت‌هاي فاحشي مشاهده شود مثل پديداري رگه‌های رنگ یا عدم اختلاط مشهود، زمان‌های بازگشت که باعث افزایش زمان چرخه توليد می‌شوند، دماهای مذاب که یا كم هستند که در این حالت با همراه شدن با فشارهای تزریق ناکافی به قالب اجازه پر شدن نمی‌دهد (Short shot)، و یا این دماها بسیار بالا هستند که باعث چکه کردن از افشانك تزريق و یا پليسه دادن می‌شوند. دلایل این فقدان مشاهده‌ی کیفیت مناسب ماده فرآیند شده دو علت است:
اول: بیشتر قطعاتی که قالب‌گیری مي‌شوند در ابتدا برای استفاده از یک بسپار مشخص با خواص فیزیکی کافی طراحی می‌شوند. قطعات آزمایش می‌شوند و در نهایت تحت تولید قرار می‌گیرند. قالب‌گیری واقعی ممکن است در ماشینی انجام شود که فشار تزریق کافی نداشته باشد. در این حالت برای غلبه بر کمبود فشار تزریق، اپراتور فشار و دمای سیلندر را افزایش می‌دهد تا ماده بتواند قالب را پر کند. به ندرت رخ می‌دهد اپراتور بررسی کند که آیا دما بسیار بالا است یا نه، چرا که وظیفه او پر کردن قالب و توليد قطعه است و احتمالا نمی‌داند که به دلیل افزایش دما یا برش امکان تخریب وجود دارد. بعد از اینکه قطعه در تولید قرار گرفته است، آزمایش فیزیکی معمولا زمانی انجام می‌گیرد که نقصی رخ دهد.
دوم: شرکت‌های تولید‌کننده ماشین‌های تزریق، توسط قالب‌ سازها مورد الزام قرار نمی‌گیرند تا فناوری فرآیند را بهبود دهند چرا که قالب‌ ساز از نیاز برای یک سطح بالا از فناوری فرآیند و یا ناشی از فناوری فرآیند بهبود یافته آگاه نیست. فناوری‌های فرآیندی بسیار کمی انتقال از اکسترودر به قالب‌گیری تزریقی را انجام داده‌اند. تفاوت‌های سخت‌افزاری بین اکستروژن و تزریق:

1- L/D:
طول تقسیم بر قطر (طول مارپیچ یا سیلندر تقسیم بر قطر داخلی سیلندر یا قطر خارجی پیچ ) در اکستروژن به طور معمول 30:1 و یا بیشتر است، در حالی‌که در قالب گیری تزریقی 20:1 نیز طبیعی است. در تزریق بدلیل اینکه مارپیچ عمل رفت و برگشت را نيز انجام می‌دهد طول مارپیچ کاهش یافته است. مقدار کاهش طول موثر مارپیچ ارتباط مستقیمی با مقدار تزریق دارد. بنابراین هرچه مقدار تزریق بیشتر باشد، گرسنگی مارپیچ از بسپار بیشتر است چرا که بسپار ورودی نسبت به اولین گام به سمت جلو منتقل شده است. طراحی‌های مارپیچ تزریقی معمولا تغییرات اضافی برای قسمت خوراک‌دهی دارند تا این گرسنگی را جبران کنند.
طول سیلندر و مارپیچ اکستروژن از 20:1 به 30:1 و بیشتر افزایش یافته است. دلیل این افزایش طول در فرمول‌های مربوط به سرعت جریان و جریان فشاری توصیف شده است. سرعت جریان بر حسب اینچ مکعب در ثانیه برابر است با:
Q total = Q drag + Q pressure – Q leakage
Q pressure = p D h3 P sin2 f / 12 u L
که در معادله جریان فشاری، رابطه L خطی و h به توان 3 است. ابن بدین معنی است که هر گونه افزایش در عمق می بایست افزایش مناسبی در طول داشته باشد یا در غیر این صورت مقدار جریان فشاری جریان کلی را کاهش خواهد داد. این فرمول انتقال حرارت و ذوب را در نظر نمی گیرد و تنها برای نشان دادن مقادیر در حالت گرانروي ثابت ساده سازی شده است.

مزایای استفاده از نسبت‌های طول به قطر بالا در اکستروژن عبارتند از:

افزایش سرعت ( زمان های بازگشت کاهش یافته)
دمای مذاب كم‌تر
نوسانات دما و فشار کمتر
بهبود بازدهی انرژی
موارد الف و ب کاهش زمان چرخه را سبب می شوند: مورد الف زمان چرخه را کاهش می‌دهد در صورتی‌که بازگشت یک عامل محدود کننده باشد. مورد ب زمان لازم برای بسته بودن قالب را کاهش می‌دهد، از این رو هر دو عامل زمان چرخه را کاهش می‌دهند. اگر دمای پایین مذاب بدلیل کمبود فشار یا سرعت کافی تزریق باعث تزریق کم شود، یا اگر قالب در حین تزریق باز شود (کم بودن میزان تناژ قفل‌شدگی قالب) در این حالت یا واحد تزریق به خوبی انتخاب نشده است و یا اینکه اندازه نادرستی از ماشین انتخاب شده است. هدف بکار بردن کمترین دمای مذاب ممکن نیست بلکه دمای مذابی است که تولید کننده توصیه کرده است. در بسیاری از کاربردها مشاهده شده است که دمای مذاب مشاهده شده بالاتر از دمای توصیه شده است. کوچک سازی اندازه (کاهش قطرهای سیلندر و مارپیچ ) همراه با نسبت طول به قطر زياد می‌تواند یک راه حل برای فشار تزریق ناکافی باشد. اندازه تزریق باید مورد بررسی قرار گیرد تا قطر مناسبی انتخاب شود. در بسیاری از موارد ، سرعت بازگشت می‌تواند ثابت نگاه داشته و یا افزایش یابد. کاربردهای نيازمند محل گازگيري در صنعت قالب‌گیری تزریقی که دارای همان سیلندر و نسبت طول به قطر مارپیچ (20:1)، به سرعت در حال جایگزین شدن با سامانه‌های بدون گازگير ولي با خشک‌کن می‌شوند. استفاده از یک سامانه‌ی گازگير برای بیرون کشیدن بخار و مواد فرار در صورتی‌که طراحی مناسبی داشته باشند، دارای مزایای اقتصادی بسیار بیشتری هستند. در اکستروژن نسبت طول به قطر 30:1 برای گازگيري مناسب است. جریان در ناحيه‌ي گازگيري در یک سامانه‌ی با طراحی مناسب وجود ندارد. فناوری برای بکار بردن سامانه‌های گازگيردار و استفاده از مزایای آنها بدون معایب مشاهده شده در استفاده نادرست و طراحی ضعیف وجود دارد.

2- طراحی مارپیچ:

نسبت طول به قطر بالاتر برای قسمت‌های عمیق‌تر، امکان استفاده از عمق را می‌دهد که سرعت خروجی افزایش يابد. مشکلی که عمیق بودن ناحیه پيمايش يا پمپش (Metering) ایجاد می‌کند این است که به ذرات ذوب شده اجازه ورود به ناحیه پيمايش را می‌دهند. این ناحیه قادر به حذف این ذرات نیست، پس این ذرات به سمت انتهای جریان می‌روند که در بهترین حالت نوسانات گرانروی تولیدی در قطعه قالب‌گیری شد را ایجاد می‌کنند و در بدترین حالت حضور ذرات ذوب نشده در قطعه قالب‌گیری شده را سبب می‌شوند. در صنعت قالب‌گیری تزریقی عادی است که در شرایط فوق فشار پشت داي را بالا می‌برند، در هنگامی‌که محدودیتی (افزايش فشار) اعمال شود، سرعت جریان کاهش خواهد یافت و دمای مذاب افزایش می‌یابد. هم‌چنین پایداری فشار نیز ممکن است کاهش یابد. فشار پشت داي معمولا استفاده مي‌شود و همیشه یک جای‌گزین ضعيف برای طراحی نامناسب مارپیچ است. برای کاهش سرعت جریان در برابر فشار پشت داي با یک طرح مارپیچ کلی، ممکن است فرض شود که کانال‌های جریان انتهایي در مارپیچ می‌توانند انرژی برشی بیشتری را فراهم کنند تا ذوب مورد نیاز برای رسیدن به دمای مذاب یکنواخت را کامل کند. این مسئله به طور طبیعی نادرست است، چرا که بررسی مختصر طبیعت ویسکوالاستیک بسپارهای با گرانروي کم مورد استفاده در قالب گیری تزریقی این برداشت نادرست را تایید می‌کند. در صنعت اکستروژن، طراحی‌های مارپیچ معروف به حالت کلی به ندرت در اویل دهه 1950 مورد استفاده قرار گرفتند. در فرآیند اکستروژن این طراحی تک مرحله‌ای با گام مربعی نامیده می شود که در صنعت تزریق می‌توان به آن طراحی بدون هدف! گفت: یک سوء تفاهم متداول این است که طراحی برای مصارف عمومی با گذشت بیشتری صورت می‌گیرد و استفاده از یک محدوده وسیعی از گرانروي بسپار را ممكن می‌سازد. این مسئله درست نیست. یک اختلاط با طراحی مناسب یا یک مارپیچ سدگر دارای محدوده‌های کارایی بسیار وسيع‌تري است که ناشی از توانایی آن برای پخش کلوخه‌هایی است که به ناحیه پيمايش وارد می‌شوند. طراحی‌های نوین مارپیچ اختلاط مناسب و پخش رنگدانه را بدون کاهش سرعت و البته بدون افزایش فشار پشت داي فراهم می‌سازد. فراوانی بخش های اختلاط در صنعت تزریق در سال‌های اخیر ثابت می‌کند که عملا هر بخشي که در انتهاي قسمت پيمايش (metering) قرار گرفته باشد یک طراحی بی‌هدف را بهبود خواهد بخشید که البته به معنی بودن يكسان بودن همه‌ي بخش‌هاي اختلاط نیست.
طراحی‌های دارای سدگر که در ناحیه انتقالی مواد جامد را از مذاب جدا می‌کند، برای اولین بار در سال 1959 توسط Miallefer معرفی شدند، امروزه متداول‌ترین طراحی سدگر مورد استفاده توسط R.F.Drey در سال 1970 ثبت اختراع شده است. این طراحی هم‌چنین به طور موفقیت‌آمیزی در کاربردهای قالب‌گیری تزریقی با زمان بازگشت کم و کارایی بالا و در ابتدا با نسبت‌های طول به قطر كم بکار برده شده است. در فرآیند اکستروژن کارایی به صورت پوند بر ساعت rpm (pph/rpm) و پوند بر ساعت بر اسب بخار (pph/hp) نشان داده می‌شود. طراحی ناحیه پيمايش طولانی‌تر منجر به سرعت خروجی بهتر با همان فشار پشت داي می‌شود. از آنجایی‌که فشار پشت داي کاهش می‌یابد بازدهی بهبود می‌یابد. طراحی‌های بدون هدف در بسیاری از موارد قادر به کار در فشارهای پشت داي كم نیستند چرا که اختلاط رنگ ناکافی یا کیفیت ماده خروجی پایین است. این مثال تنها ناحیه پيمايش را توصیف می‌کند. که وظیفه این بخش ايجاد فشار است. اگر این ناحیه قادر به ايجاد فشار مورد نیاز نباشد، نیاز به ايجاد فشار به بالا دست جریان منتقل شود که باعث کاهش توانایی ايجاد فشار بالا دست و در این صورت کاهش سرعت ذوب شدن می‌شود.

3- بازخوانی گشتاور:

در صنعت اکستروژن در واقع همه ماشین‌ها با یک آمپرسنج تجهیز شده‌اند که به طور مستقیم گشتاور را نشان می‌دهد. اگر کاربر قصد پیدا کردن تنظیمات بهینه گرم کن سیلندر را داشته باشد، خواندن گشتاور ارزشمند است چرا که کاربر بوسیله آن تلاش می‌کند تا نقطه اوج در منحنی ضریب اصطکاک را بدست آورد . در هر دو طرف نقطه ی اوج ضریب اصطکاک کاهش خواهد یافت و متعاقب آن توانایی مارپیچ برای توسعه و انتقال فشار نیز کمتر خواهد شد. افزایش ضریب اصطکاک، گشتاور و بازدهی مارپیچ (pph/rpm) را افزایش خواهد داد که منجر به کار کردن با دماهای کمتری از مذاب نیز خواهد شد. برای مشخص کردن نقطه‌ي اوج این منحنی، یک روال دمایی متعلق به تولید کننده را باید انتخاب کرد ، سپس به ماشین اجازه داد تا در دماهای واقعی و بدون سرد کردن کار کند، در این حالت باید دماهای نواحی را 5 درجه کمتر از دماهای واقعی در نظر گرفت. افزایش درجه نشان دهنده تغییر آمپراژ یا فشار است. اگر آمپراژ یا فشار افزایش پیدا کرد این عمل را ادامه دهید و اگر کاهش یافت این عمل را متوقف و دماها را در حال خواندن آمپراژ یا فشار افزایش دهید. با کاهش آمپراژ یا فشار باید توقف کرد و تنظیماتی را انتخاب کرد که منجر به بالاترین فشار یا آمپراژ می شود. در قالب‌گیری تزریقی، گشتاور را می‌توان و می‌بایست از طریق فشار هیدرولیکی اعمالي روی مارپیچبررسی کرد. با در دسترس داشتن باز خوانی صحیحی از گشتاور، امکان تعیین کارایی مشابه با صنعت اکستروژن به کاربر داده می شود. لازم به ذکر است که انرژی استفاده شده توسط موتور محرك مارپيچ حداقل 70 درصد کل انرژی است که توسط یک ماشین قالب‌گیری تزریقی استفاده می‌شود بنابراین انتخاب مارپیچی با کارایی مناسب باعث صرفه جویی قابل توجهی در فرآیند قالب‌گیری تزریقی می شود.

4- بازخوانی فشار:

در اکستروژن، فشار داي با دقت خوبی توسط یک انتقال دهنده فشار در پایین دست جریان، پايش می‌شود. در فرآیند قالب‌گیری تزریقی بازخوانی شامل فشار پشت دای است، این همان فشار هیدرولیکی است که در سیلندر تزریق خوانده می شود. نسبت سیلندر تزریق یا سیلندرها به قطر داخلی پوسته اکسترودر معمولا 10 به 1 است. بنابراین دقت در این حالت 10 برابر کمتر از انتقال دهنده‌ای است که در پایین دست جریان (مثل فرآیند اکستروژن) قرار دارد. معمولا نوسانات بازخوانی فشار پشت دای در قالب گیری تزریقی در دسترس نیست. در بعضی از سامانه‌های تزریق دقت قربانی می‌شود، زیرا به دلیل اندازه‌ی نامناسب، شیرهای يك‌طرفه در فشارهای پایین به خوبی عمل کنترل را انجام نمی‌دهند. نوسانات فشار در فرآیند اکستروژن یکی از متغیرهای طبیعی در مارپیچ است که بازخوانی آن نیز انجام می‌شود. این نوسانات کارایی مارپیچ و هم‌چنین کیفیت و نوسانات محصول نهایی را تعیین می‌کنند. در قالب گیری تزریقی، بازخوانی دقیق فشار در مرحله بازگشت امکان تعیین کارایی مارپیچ را می‌دهد. در تزریق معمولا زمان بازگشت نسبت به دیگر متغییرهای ماشین تغییر بیشتری می‌کند. زمان بازگشت و تغییرات زمان بازگشت معمولا تنها نشانه‌ی موجود برای بررسی کارایی مارپیچ در ماشین‌های تزریق است. تقریبا در همه‌ی شركت‌های تولید ماشین‌های تزریق، زمان‌های آسودگی (که باعث افزایش زمان‌های چرخه‌ي توليد می‌شوند) در نظر گرفته نمی‌شوند. با طراحی مناسب مارپیچ ، می‌توان محدودیت‌های زمان آسودگی را حذف کرد و کیفیت محصول را بهبود داد. بعضی از تولید کننده‌های ماشین های تزریق با افزایش rpm زمان‌های آسودگی را کاهش داده‌اند که در صورت عدم طراحی مناسب مارپیچ می‌تواند منجر به حرارت برشی بالا و کیفیت پایین محصول شود. اما بر عکس، در بسپارهای مهندسی دما بالا با طراحی مناسب مارپیچ ، rpm بالا می‌تواند یک مزیت محسوب شود.

5- بازخوانی دما:

در فرآیند اکستروژن دمای مذاب را در پایین دست مارپیچ بدست می‌آورند. محل مناسب برای بدست آوردن دما در انتهای خروجی رابط است (شکل 2) که صحیح‌ترین حالت برای ترموکوپل حالت فرورفته در خط مرکزی جریان مذاب است (شکل 3). حالت مناسب دیگر حالت تماس محدود است (معمولا یک چهارم اینچ). با دوام‌ترین نوع نیز یک نوع سطحی است که البته کمترین میزان صحت را دارد. تغییرات دما به راحتی از طریق بازخوانی دیجیتالی قابل مشاهده و یا قابل ثبت روی ماشین‌های مجهز به ریزپردازنده است. در قالب‌گیری تزریقی، بازخوانی دمای ماده‌ی خروجی از اکسترودر معمولا امکان‌پذیر نیست. صحت در بازخوانی دما در اکسترودرها راحت‌تر از ماشین‌های قالب‌گیری تزریقی بدست می‌آید. اگر قصد بررسی دما در ماشین‌های قالب گیری تزریقی به مانند اکسترودرها را داشته باشیم، می‌بایست خروجی مارپیچ را بهنگام به عقب رفتن آن پايش کرد که بدیهی است این کار بسیار مشکلی است. با این حال این نوع از پايش، به خوبی تغییرات دما را در حین بازگشت توصیف نمی‌کند و فقط یک معیار خوب از دمای ماده ی اکسترود شده در حین تزریق است. حداقل فایده این حالت بدست آوردن نقطه ی مناسبی است که کاربر یا مهندس فرآیند می‌تواند داده ها آن را ثبت کرده و به آن ارجاع کند و در صورت ایجاد تغییرات بزرگ یا دماهای اضافی مخرب برای بسپار، آن را بهبود دهد. در حال حاضر برای قطعات قالب گیری شده تعیین دماهای ماده اکسترود شده بدون وقفه در چرخه ماشین غیر ممکن است.

نتیجه گیری:
کنترل کیفیت محصول در اکستروژن به صورت درون خطی قابل اندازه گیری است و با یک هزارم اینچ یا بهتر قابل بررسی است. درقالب‌گیری تزریقی با اینکه اندازه‌گیری دشوار‌تر است اما غیر ممکن نیست. ماشین های قالب‌گیری تزریقی جدید با ریز پردازنده‌هایی مجهز شده اند که کارکرد ماشین را کنترل و نمایش می‌دهند. بسیاری از این ماشین‌ها دارای کنترل فرآیند آماری (SPC) هستند که در صورت استفاده‌ی صحیح بسیار مفید هستند. همانطور که پیش تر شرح داده شد، در ماشین های قالب گیری تزریقی مشخصه های ضروری برای کنترل ماده ی اکسترود شده و کارایی مارپیچ در حال فراموش شدن هستند. بازخوانی‌های دقیق گشتاور مارپیچ، فشار و دمای مذاب در صنعت اکستروژن به عنوان موارد ضروری در نظر گرفته شده‌اند و استاندارد سازی نیز در مورد آنها صورت گرفته است که در مورد ماشین‌های قالب‌گیری تزریقی نیز این موارد باید در نظر گرفته شوند. بطور کلی واحد تزریق فراموش شده و فناوری فرآیند در آن در نظر گرفته نمی‌شود. فناوری مورد استفاده موجود، از دهه 1950 استفاده می شود. در دهه های 1950، 60و70 فناوری فرآیند در صنعت اکستروژن تغییرات اساسی کرده است. نیروی محرکه این تحولات ظهور تجهیزات اندازه گیری و پايش بود که می‌توانستند کیفیت محصول را به دقت نشان دهند. این تحولات با پدیدار شدن بسپارهای جدید همراه شد که این بسپارها نیاز به فناوری‌های جدیدتری از فرآیند داشتند. بدین ترتیب این فرآیند تکامل پیدا کرد و امروزه در دسترس است.
همین نوع از تحول در صنعت قالب‌گیری تزریقی نیز رخ خواهد داد. که البته با تاخیر در حال انجام شدن است و تغییراتی از قبیل طراحی‌های نوین ناحيه‌ي اختلاط و حتی نسبت طول به قطرهای طولانی‌تر در حال توسعه و اجرا هستند. مشکل اینجاست که در بسیاری از موارد صنعت قالب گیری تزریقی سعی در دوباره کاری در زمینه اختراع دارد. طراحی‌های اختلاط که قادر به بهبود کیفیت و نحوه‌ي بازگشت هستند با طراحی ضعیفی از مارپیچ همراه شده‌اند. طراحی‌های سدگردار با نسبت طول به قطرهایی همراه شده‌اند که قادر به فراهم کردن کارایی بالا و بهبود اختلاط نیستند. صنعت قالب‌گیری تزریقی به جای دوباره‌کاری در زمینه نوآوری بهتر است که تا نوآوری‌های صنعت اکستروژن را بررسی کرده و این فناوري‌ها را بکار بندند. لازمه‌های دو فرآیند اکستروژن و قالب‌گیری تزریقی بسیار شبیه هستند. هزینه‌های صرف شده برای نسبت‌های طول به قطر بالاتر برای مارپیچ، مشاهده و پايش بهتر و طراحی‌های پیشرفته‌تر مارپیچ در مقایسه با مزایای آن بسیار ناچیز است و با کاهش مصرف بسپار و ایجاد میزان کمتری از ضایعات قابل توجیه است. اگر واحد تزریق ماده اکسترود شده را با کیفیت، گرانروی و سرعت مناسب و کنترل مناسبی تولید کند، بسیاری از نقص‌ها در این زمینه قابل اجتناب هستند. علاوه بر آن تکرارپذیری برای هر مرتبه از تزریق باید فراهم شود. هنگامی‌که این دو لازمه اساسی به میزان کافی توسط واحد تزریق مورد توجه قرار گیرند، میزان ضایعات و نقص‌ها به طور چشمگیری کاهش خواهند یافت. تحول در فرآیند قالب‌گیری تزریقی باعث بالا رفتن سطح صنعت و رسیدن به جایگاه بسیار بالاتر خواهد شد. اگر ما قادر به حذف نوسانات از واحد تزریق باشیم و کیفیت مناسبی از ماده اکسترود شده را فراهم کرده و امکان افزایش زمان‌های بازگشت و زمان چرخه را حذف کنیم، آنگاه به طور واقع‌گرایانه‌تری می‌توانیم به طراحی قالب برای بهبود جریان پرداخته و مشکلات مربوط به کیفیت محصول ناشی از طراحی‌های ضعیف قالب را حذف کنیم.

گيربکس – کاربرد گيربکس – گيربکس چیست ؟

Posted by roueen in اکسترودر تک مارپیچ on June 19, 2015 with Comments Off on گيربکس – کاربرد گيربکس – گيربکس چیست ؟

گيربکس – کاربرد گيربکس گيربکس چیست ؟

تعريف گيربکس : گيربکس ماشيني است که براي انتقال توان مکانيکي از يک منبع توليد توان به يک مصرف کننده و هچنين برآورده ساختن گشتاور و سرعت دوراني مورد نياز مصرف کننده به کار مي رود.  گيربکس درواقع يک واسطه بين منبع توان و مصرف کننده توان مي باشد که بين منبع توان و مصرف کننده توان يک انعطاف پذيري بر قرار ميکند.
به دليل هماهنگ بودن گشتاور و سرعت دوراني منبع توليد توان با مصرف کننده نياز به ماشيني که بتواند اين هماهنگي را به صورت يک واسطه برقرار کند امري ضروري به نظر مي رسد دستگاهي که اين خواسته را ميتواند تامين کند گيربکس نام دارد.
منبع توليد توان مهم نيست که با چه نوع سوخت يا منابع انرژي توان را توليد ميکند بلکه اين مهم است که در شفت ورودي به گيربکس توان توليد شده را به صورت گشتاور به گيربکس منتقل کند دستگاههايي که ميتوانند توان مورد نياز  گيربکس را تامين کنند شامل:

موتورهاي الکتريکي – موتورهاي ديزل – موتورهاي بنزيني – موتورماي گاز سوز- توربين هاي بخار – توربين هاي گازي – توربين هاي آبي – توربين هاي بادي – موتورهاي جت – و منابع توليد تواني که انرژي خود را از خورشيد تامين ميکنند مي باشند.

مصرف کننده ميتواند هر نوع ماشيني باشد فقط کافي است که مصرف کننده بتواند توان خروجي از گيربکس را بصورت گشتاور دريافت کند. به عنوان مثال ميتوان به موارد زير اشاره کرد:

خودروها- پمپها- هليکوپترها- هواپيماها- کشتي ها – ماشين هاي تراش و…

در دستگاه هايي که براي آ نها تنوع سرعت اهميت ندارد بلکه افزايش سرعت و کاهش گشتاور يا کاهش سرعت و افزايش گشتاور اهميت دارد از گيربکسی که بتواند اين کاهش يا افزايش گشتاور را در يک مرحله يا چند مرحله انجام دهد استفاده مي کنيم اين نوع ازگيربکس ها ، گيربکس تک سرعته نام دارند مثلا گيربکسی که در بعضي از انواع آسانسوربه کار ميرود.
در بعضي از ماشين آلات و دستگاههايي که در حين کار نياز به افزايش يا کاهش سرعت دوراني داريم نياز به تنوع سرعت نيز داريم مثلا خودروها وقتي از سر بالايي ميخواهند بالا روند بيشتر به گشتاور بالاتر نياز دارند تا سرعت بيشتر تا بتوانند از سر بالايي بالا روند و وقتي که در اتوبان ها حرکت ميکنند بيشتر نياز به سرعت بيشتر دارند تا گشتاور بالا لذا براي تامين اين تنوع سرعت و گشتاور ازگيربکسی که بتواند اين تنوع را برآورده سازد استفاده مي شود. به اين نوع از گيربکس ها که مي توانند اين تنوع سرعت و گشتاور مورد نياز را براورده سازند گيربکس چند سرعته گفته مي شود. کاربرد گيربکس در زندگي انسان از زمان اختراع چرخ و قرقره تا به امروز که به اوج شکوفايي صنعتي رسيده بسيار مهم و جزو لاينفک صنعت مي باشد.

انواع پلیمرها

Posted by roueen in مواد اولیه on June 19, 2015 with Comments Off on انواع پلیمرها

انواع پلیمرها

انواع پلیمرها : پلیمرهـای طبیعی نظیرخانواده سلولزی ها ( پنبه ، کتان ، کاغذ ، چوب و ……… ) ، پروتئین ها ( پشم ، ابریشم ، چرم و ………..

پلی سیلیکات ها تقسیم می شوند .

پلیمرهای مصنوعی ساخت دست بشر که اکثریت مطلق مواد پلیمری را تشکیل می دهند ( پلاستیک ها ، لاستیک ها ، چسب ها ، رنگ ها ، فوم ها ، کامپوزیت ها ) پلیمرهای بازیابی شده که منشاء طبیعی داشته و برخی عوامل روی آن استخلاف شده اند نظیر نیترات سلولز ،

پلاستیک: پلاستیک ها موادی هستند مصنوعی ، که از ملکول های بزرگ و سنگین تشکیل شده اند و می توان آنها را تحت فشار و حرارت قالب گیری نمود,,خصوصیت دیگر پلاستیک این است که برخلاف لاستیکها در برابر نیروی وارده مقاومت نشان می دهد. .

لاستیک: یک لاستیک در مقابل نیروی کم تغییر شکل زیادی داده و حداقل تا ۳۰۰% طول آن در دمای محیط افزایش می یابد و زمانی که تنش قطع می گردد به حالت اولیه خود بر می گردد.

کامپوزیت: موادی هستند که از دو سازندة کاملاً متفاوت از نظر خوّاص مکانیکی ، همچنین با درصدهای وزنی بالا تشکیل شده اند که در نهایت موجب بهبود و ارتقاء خواص محصول می شوند .

هدف از ساخت یک کامپوزیت تقویت فاز ضعیف ( مثل پلی استر ) و تبدیل آن به یک مادة مرکب مستحکم (مانند فایبرگلاس) با استفاده از یک تقویت کننده مکانیکی ( الیاف شیشه ) است .

رنگ: موادی پوشش دهنده هستند که نقش تزئین و حفاظت از سطح قطعه را بعهده دارند.

پوشش های آلی عموماً از اختلاط چهار جزء مهم رزین، رنگدانه، حلاّل و مواد افزودنی بدست می آیند.

در صنعت رنگ سازی اساس کار پخش رنگدانه در رزین می باشد، ذرات رنگدانه بایستی به صورت یکنواخت در محیط پخش شوند.

پایة اصلی پوشش آلی را رزین تشکیل می دهد، انتخاب نوع پوشش از روی نوع رزین انجام می پذیرد. رزین وظایف عمده ای را بعهده دارد، ایجاد فیلم روی سطح مورد نظر از وظایف اصلی رزین است، رزین بوسیلة این خاصیت قادر خواهد بود سطح زیرین را از محیط اطراف جدا کند.

معمولاً رزین به صورت مایع روی سطح پهن شده و با انجام یک یا چند واکنش پلیمریزاسیون جامد می شود. با اینکه رزین مایع خود ساختمان پلیمری دارد ولی سطح پلیمریزه شده و جرم ملکولی آن بالاتر می رود.

مهمترین رزین ها عبارتند از :

رزین های پلی استر ، رزین های پلی اتر ، رزین های پلی اورتان ، رزین های پلی وینیلی ، رزین های اکریلیک .

رنگدانه ها :

ذرّات جامدی هستند که برای بوجود آوردن خصوصیات معینی در رنگ پراکنده می شوند.

این خصوصیات عبارتند از : رنگ ظاهری ، پوشانندگی ، دوام ، استحکام مکانیکی و محافظت از سطوح فلزی در برابر خوردگی.

چسب:

فوم:موادی جامد هستند که توسط یک گاز منبسط شده و حاوی تعداد بسیار زیادی حفره ( Cell) با شکل و اندازه یکسان می باشند .

فوم های پلیمری را به صور مختلف طبقه بندی می کنند ، یکی از مهمترین این دسته بندی ها بر مبنای دمای عبور شیشه ای (Tg 1 ) استوار گشته است :

الف : فوم های نرم و انعطاف پذیر ب : فوم های سخت

از خصوصیت مهم فومها عایق صدا و الکتریسیته بودن و ضربه وهمچنین سبکی زیاد آن است.

الیاف:در صنعت نساجی استفاده می شوند.از نظر خصوصیت مکانیکی بر خلاف لاستیکها در برابر نیرو طولش افزوده نمی گردد و قابلیت بلوری شدن هم دارد.

پلی اتیلن

پرمصرفترین پلاستیک دنیا

پلی اتیلن پرمصرفترین پلیمر در دنیا از دسته ترموپلاستیک ها و متعلق به خانواده پلی اولفین هاست و نمایان گر بزرگترین گروه از ضایعات پلاستیکی می باشد.این پلیمر کاربرد فروانی در صنعت بسته بندی دارد.برای مثال کیسه ها و دبه ها, بطری های شیر, قاشقهای پلاستیکی در آشپزخانه را می توان نام برد.خواص PE به طور گسترده ای به درجه شاخه ای بودن زنجیر آن بستگی دارد.

نحوه تولید گریدهای اصلی پلی اتیلن

PE در دو شکل اصلی به نام های پلی اتیلن با چگالی بالا(HDPE) و پلی اتیلن با چگالی پایین (LDPE) موجود می باشد.این پلیمر از طریق پلیمریزاسیون رادیکالی اتیلن تولید میشود. برای رسیدن به جرم مولکولی بالا به دلیل تبخیر بالای مونومر ͵واکنش را در فشار بالا (atm 1500-1300) و دمای بالا ( C° ۳۰۰-۸۰) نگه میدارند. در این شرایط سخت پلیمر حاصله یک پلیمر با درجه بالایی از زنجیرهای  شاخه ای کوتاه و بلند است که کریستالیتی را تا حدود ۵۰% محدود میکند و سبب یک گستره ذوب نسبتا پهن میگردد.HDPE با استفاده از کاتالیست فیلیپس و یا زیگلر_ناتا تولید میشود و و این پلیمر خطی تر و درجه کریستالیتی بالاتری از LDPE دارد.

پلی پروپیلن PP

پلی پروپیلن (PP) دومین ترموپلاستیک پرمصرف از خانواده پلی اولفین هاست. در مقایسه با PE با چگالی کم و زیاد ͵PPدارای استحکام ضربه ای کمتر ولی دمای کاربری بالاتر و استحکام کششی بیشتر است .پلی پروپیلن یک از پلیمرهای با کارآیی متنوع است که در تولید قطعات مختلف پلاستیکی͵ صنعت خودرو (تزئینات داخلی͵ پروانه ها)  و هم چنین در صنعت الیاف (جمن های مصنوعی طناب ضد پوسیدگی) کاربرد دارد.

تولیدPP:

پلی پروپیلن عمدتا توسط فرآیند پلیمریزاسیونی که نظم فضایی در آن مهم است͵برای به دست آوردن ساختار زنجیره ای با نظم بالاتر تولید میشود. تجاری ترین و مهم ترین نوع PP͵PPایزوتاکتیکاست.این پلیمر در دمای پایین  و با استفاده از کاتالیزور زیگلر_ناتا تولید میشود. در این روش ۹۰% پلیمر حاصله  به فرم ایزوتاکتیک و به همراه واحدهای تکرار شونده با آرایش سر به دم است .روش های تولید گوناگونی  از جمله پلیمرزاسیون حلالی به وسیله فرآیند حلالی و پلیمرزاسیون فاز گاز مورد استفاده است. در ساختار PP ایزوتاکتیک  واحدهای مونومری با گروه های متیلی با آرایش سر به دم متصل شده و همگی در یک طرف زنجیر اصلی قرار دارند  با استفاده از کاتالیست های متالوسن جدید  تولید گونه های مختلف PP از جمله : ایزوتاکتیک ͵سیندیوتاکتیک͵ اتاکتیک و نیمه_ایزواتاکتیک میسر میشود.ساختار نیمه_ایزواتکتیک ساختاری است که در آن هر گروه متیل دیگری در جایگاه ایزو تاکتیت قرار میگیرد و گروه های متیلی باقی مانده به صورت تصادفی جایگیری میکنند .

لوله پلی اتیلن جهت مصارف گازرسانی

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on لوله پلی اتیلن جهت مصارف گازرسانی

لوله پلی اتیلن جهت مصارف گازرسانی

 

لوله و اتصالات پلی اتیلن برای مصارف گازرسانی باعث کاهش هزینه و زمان اجرای پروژه های گازرسانی در سطح کشور شده است.

آغاز استفاده از لوله‌هاي پلاستيکي تحت فشار، از اوايل سال 1950 ميلادي بوده است. از جمله کاربري‌هاي اين لوله‌ها، انتقال آب، مواد شيميايي، سيالات خنک کننده و گرم کننده، گازها، هواي فشرده و سيستم‌هاي آتش نشانی، چه در روي زمين و چه در زير زمين است.يکي از اولين موارد کاربرد پلي اتیلن (با دانسيته متوسط) در زمينه انتقال گاز بوده است كه از سال 1960 ميلادي مورد استفاده قرار گرفته است. در حال حاضر بيش از 90% خطوط انتقال گاز ايالات متحده و کانادا از مواد پلاستیکی است که 99% آن نيز از جنس پلي اتیلن است. لوله های پلي اتیلن در شبکه هاي انتقال گاز نه تنها در آمريکاي شمالي، بلکه در سرتاسر جهان استفاده مي‌شوند.

مزاياي استفاده از لوله های پلي اتیلن گازي :

1- قابلیت اتصال آسان
لوله پلي اتیلن قادر به اتصال جوشي است, به طوري که اتصالات به وجود آمده نه تنها به استحکام خود لوله هستند، بلکه در برخي موارد از خود لوله نيز مستحکم­تر مي­باشند. از آنجاييکه عمده نقطه ضعف خطوط تحت فشار محل اتصالات است، مي‌توان نتيجه گرفت که اتصالات پلي اتیلن در مقايسه با ساير مواد از استحکام مناسب‌تري برخوردارند.

2- قابلیت انعطاف
لوله پلي اتیلن تا حدود 25 برابر قطر لوله قابل خم شدن است. اين مسأله باعث مي‌شود در بسياري از موارد براي تغيير زاويه خط لوله نيازي به استفاده از اتصالات نباشد.از سوي ديگر انعطاف پذيري پلي اتيلن استفاده از آن را در مناطق زلزله خيز توجيه پذيرتر مي‌کند.

3- مزایای نصب
روش‌هاي نصب بي نظيري که به خاطر انعطاف پذيري و اتصالات بدون نشتي لوله های پلي اتیلنی قابل استفاده‌اند، استفاده از اين لوله‌ها را در مقايسه با لوله‌هاي فولادي از نظر اقتصادي و فني توجيه پذير مي‌کند و باعث مي‌شوند مقدار زيادي در هزينه و زمان صرفه جويي شود.

4-  مقاومت در مقابل خوردگي و اثر مواد شيميايي:
لوله پلي اتیلن از مقاومت شيميايي بسيار خوبي برخوردارند و در مقابل ترکيبات فعال گاز و ساير ترکيبات شيميايي بسيار مقاوم مي‌باشند
.

5-  عمر طولاني، دوام و کاهش هزينه ها:
عمر کاري لوله های پلي اتیلن بين 50 تا 100 سال برآورد مي‌شود و اين به معناي کاهش هزينه‌هاي جايگزيني براي طولاني مدت است.از سوي ديگر هزينه كارگزاري ، نصب و نگهداري اين محصول نسبت به ساير محصولات بسيار توجيه پذير و پايين مي‌باشد.

استانداردها و آزمون‌ها

آزمون‌هايي که در کنترل کيفي لوله‌هاي مورد استفاده در انتقال گاز انجام مي شوند، به سه گروه تقسيم مي‌شوند:

1- آزمونهاي بعد از توليد (BRT):به آزمون‌هايي مي گويند که قبل از ترخيص هر دسته از توليدات روي آنها انجام مي شود تا از کيفيت توليد اطمينان حاصل شود.
2- آزمونهاي تأييد فرايند (PVT):به آزمون‌هايي اطلاق مي شود که جهت بررسي کيفيت و پيوستگي خط توليد در فواصل زماني خاص بر روي مواد، اجزا و يا مجموعه انجام مي‌شود.

3- آزمونهاي نوعي (TT):به آزمون‌هايي مي‌گويند که براي اثبات احراز تأييديه‌هاي مورد نظر استاندارد در مورد مواد، اجزا و توانايي مجموعه انجام مي‌شود.

پلی اتیلن چیست؟ تاریخچه پلی اتیلن – انواع پلی اتیلن و مزایای آنها

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on پلی اتیلن چیست؟ تاریخچه پلی اتیلن – انواع پلی اتیلن و مزایای آنها

پلی اتیلن چیست؟ تاریخچه پلی اتیلن، انواع پلی اتیلن و مزایای آنها

پلی اتیلن یا پلی اتن یکی از ساده‌ترین و ارزانترین پلیمرها است.
پلی اتیلن جامدی مومی و غیر فعال است. این ماده از پلیمریزاسیون اتیلن بدست می‌آید و بطور خلاصه بصورت PE نشان داده می‌شود.
مولکول اتیلن ( C2H4 ) دارای یک بند دو گانه C=C است. در فرایند پلیمریزاسیون باند دو گانه هر یک از مونومرها شکسته شده و بجای آن پیوند ساده‌ای بین اتم‌های کربن مونومرها ایجاد می‌شود و محصول ایجاد شده یک درشت‌مولکول است.

تاریخچه تولید پلی اتیلن
پلی اتیلن اولین بار بطور اتفاقی توسط شیمیدان آلمانی “Hans Von Pechmanv” سنتز شد. او در سال 1898 هنگام حرارت دادن دی آزومتان ، ترکیب مومی شکل سفیدی را سنتز کرد که بعدها پلی اتیلن نام گرفت.
اولین روش سنتز صنعتی پلی اتیلن بطور تصادفی توسط “ازیک ناوست” و “رینولرگیسون” ( از شیمیدان‌های ICI ) در 1933 کشف شد. این دو دانشمند با حرارت دادن مخلوط اتیلن و بنزالدئید در فشار بالا ، ماده‌ای موم‌مانند بدست آوردند. علت این واکنش وجود ناخالصی‌های اکسیژن‌دار در دستگاه‌های مورد استفاده بود که بعنوان ماده آغازگر پلیمریزاسیون عمل کرده بود. در سال 1935 “مایکل پرین” یکی دیگر از دانشمندهای ICI این روش را توسعه داد و تحت فشار بالا پلی اتیلن را سنتز کرد که این روش اساسی برای تولید صنعتی LDPE در سال 1939 شد.

استفاده از انواع کاتالیزورها در سنتز پلی اتیلن
اتفاق مهم در سنتز پلی اتیلن، کشف چندین کاتالیزور جدید بود که پلیمریزاسیون اتیلن را در دما و فشار ملایم‌تری نسبت به روش‌های دیگر امکان‌پذیر می‌کرد.
اولین کاتالیزور کشف شده در این زمینه تری اکسید کروم بود که در 1951 ، “روبرت بانکس” و “جان هوسن” در شرکت فیلیپس تپرولیوم آنرا کشف کردند. در 1953، “کارل زیگلر” شیمیدان آلمانی سیستم‌های کاتالیزور شامل هالیدهای تیتان و ترکیبات آلی آلومینیوم‌دار را توسعه داد. این کاتالیزورها در شرایط ملایم‌تری نسبت به کاتالیزورهای فیلیپس قابل استفاده بودند و همچنین پلی اتیلن یک آرایش (با ساختار منظم) تولید می‌کردند. سومین نوع سیستم کاتالیزوری استفاده از ترکیبات متالوسن بود که در سال 1976 در آلمان توسط “والتر کامینیکی” و “هانس ژوژسین” تولید شد.
کاتالیزورهای زیگلر و متالوسن از لحاظ کارکرد بسیار انعطاف‌پذیر هستند و در فرایند کوپلیمریزاسیون اتیلن با سایر اولفین‌ها که اساس تولید پلیمر های مهمی مثل VLDPE و LLDPE و MDPE هستند، مورد استفاده قرار می‌گیرند.
اخیرا کاتالیزوری از خانواده متالوین‌ها با قابلیت استفاده بالا برای پلیمریزاسیون پلی اتیلن به نام زیرکونوسن دی کلرید ساخته شده است که امکان تولید پلیمر با ساختار بلوری (تک آرایش) بالا را می‌دهد. همچنین نوع دیگری از کاتالیزورها به نام کمپلکس ایمینوفتالات با فلزات گروه ششم مورد توجه قرار گرفته است که کارکرد بالاتری نسبت به متالوسن‌ها نشان می‌دهند.

تاریخچه پلی اتیلن
كلمه پليمر از كلمه يونانى( پلى ) به معناى چند و ( مر ) به معناى واحد و يا قسمت بوجود آمده است . پلیمرها را اشتباها رزين ، الاستومر و پلاستيك نيز مى‌نامند.
در حالى كه پلاستيك تنها يك صفت است كه براى مواردى به كار مى رود كه قابليت تغيير شكل بر اثر فشار را دارا هستند و اغلب اشتباها به عنوان يك كلمه اصلى براى صنایع پلاستیک و توليدات آن به كار مى رود.
اولين بار كلمه پليمر توسط شيمى دانى به نام رنالت در سال 1835، به كار رفت و اولين كاربرد تجارى مواد پليمرى در سال 1834 با كشف كائوچو آغاز شد.
لكن اولين پلاستيك مصنوعى با نام نيترات سلولز در سال 1862 كشف و در سال 1868 وارد بازار شد.
نايلون در سال 1938، پلی اتیلن در سال 1942، پلی پروپیلن در سال 1957،پلى بوتيلن درسال 1974و پليمرهاى كريستال مايع براى ساخت اجزاى الكترونيكى در سال 1985رايج گرديدند.
پليمرها به سه نوع پلیمرهاى طبيعى ، طبيعى اصلاح شده و مصنوعى تقسيم مى شوند.
اولين پلاستيكهاى صنعتى مدرن حدود 100سال پيش رواج يافتند ولى در دهه هاى اخير رشد فزاينده و گوناگونى در صنايع به وقوع پيوست .
حدود 60پليمر بسيار مهم تاكنون به بازار عرضه شده كه مشتقات آنها به بيش از 2000مورد مى رسد و كماكان در حال افزايش است. پلى اولفينها پلیمرهاى گرما نرم با خواص تقريبا مشابه و فرمولاسيون نزديك به هم هستند كه انواع معروف آنها پلی اتیلن ها، پلی پروپیلن ها و پلى بوتيلن ها مى باشند كه در صنايع لوله،كاربرد فراوانترى دارند.

بررسی انواع مختلف پلی اتیلن ها و مزایای هر یک نسبت به دیگری
با يك نگاه به جدول زير متوجه میشويد از نظر انبساط، مقاومت در برابر حلالها، مقاومت كششى، مقاومت فشردگى، و مقاومت حرارتى و نفوذ پذيرى گازى پپلی پروپیلنها امتياز بيشترى نسبت به پلی اتیلنها داشته و به علت مقاومت حرارتى و مقاومت كششى پلى پروپيلنها از پلى بوتيلنها بهتر هستند. اين موارد از جمله مهمترين مواردى هستند كه در صنعت لوله كشى آب سرد گرم مورد نظر مى باشند و باعث امتياز پلى پروپيلن ها مى شوند. البته در اين ميان لوله هاى با تركيب پليمر و آلمينيوم نيز توليد شدند كه به دليل گرانى و اتلاف حرارتى و … به علت وجود فلز در آنها زياد مورد استقبال قرار نگرفت.

پلی پروپیلن ها پلى بوتلين ها پلی اتیلن ها ازنظر
مقاومت شيميايى
بسيارخوب
مقاومت شيميايى
بسيار خوب
مقاومت شيميايى
بسيار خوب
شيميايى
ارزان بدون فن آورى
تا حدى گران با فن آورى
تا حدى گران قيمت ارزان و موجود بودن در
انواع قابل مصرف
هزينه
26 حد اكثر ———————— 50 حد اكثر انبساط حرارتى
مورد حمله مورد حمله مورد حمله اسيدهاى اكسيد كننده
مي شكند لكن تثبيت مي گردد خرد مي شود تثبیت کننده دارد اثر نور خورشيد و اشعه ماوراى بنفش
آرام سريعاً ميسوزد آرام سرعت اشتعال
مقاوم تا
80 درجه سانتيگراد
مقاوم مقاوم تا
60 درجه سانتيگراد
در برابر حلالها
مقاوم مقاوم مقاوم در برابر بازها
31-62 26-30 4-38 مقاومت كششى
38-55 ————————– 19-25 مقاومت فشردگى
0/025-0/25 نمي شكند ( كاملاً ارتجاعى ) 25-1
مانند شلنگ نمي شكند
ضربه پذيرى ايزود
85-110    راك ول 55-65   شر 41-70   راك ول سختى
قابل استفاده در لوله كشى گاز ————————– غير قابل استفاده در خلاء نفوذ پذيرى گازى
110-160 کمتر از 110 80-120 مقاومت حرارتى  (درجه سانتيگراد)

خط تولید لوله سبز یا پلی پروپیلن – لوله سبز یا پلی پروپیلن

Posted by roueen in اکستروژن پلاستیک on June 18, 2015 with Comments Off on خط تولید لوله سبز یا پلی پروپیلن – لوله سبز یا پلی پروپیلن

تعریف مراجل  تولید لوله سبز یا پلی پروپیلن : ابتدا مواد پلیمری  به همراه يك كاتاليزور وارد دستگاه شده و توسط ميله ماردون با هم مخلوط شده و با حركت دوراني ميله ماردون به سمت المنت هدايت مي شوند.
در اين قسمت مواد به وسيله المنت كه با درجه حرارت  مخصوص تنظيم شده است، ذوب شده و برای قالب گیری اماده می شوند
به مجموع دو قسمت فوق  (سیلندر ماردون و المنت گرم كننده ) در اصطلاح فني اكسترودر گفته مي شود كه اولين مرحله از فرآيند توليد مي باشد.
مواد ذوب شده بعد از عبور از اكسترودر بايد از قالب كه در انتهاي دستگاه اكسترودر نصب شده است عبور نمایند كه اندازه لوله های سبز قابل تنظيم بوده، كه مهمترين وظيفه را در طي فرآيند ساخت لوله همین قالب ها بر عهده دارند.
لازم به ذكر است كه بيشترين ضايعات نيز در همين قسمت مي باشد كه البته مي توان اين ضايعات راه تنظيم دقيق و مجتمع قالب به حداقل ممكن كاهش داد.
بعد از عبور از مرحله قالب بندي لوله وارد محفظه اي به نام كالیبر مي شود. كالیبر لوله برنزي شكلي است با شيارهاي مدور يا مارپيچ كه با  ابعاد خاص كه وظيفه شكل دهي ثانويه لوله را به عهده داشته است. بعد از عبور از كالیبر لوله وارد يك خلاﺀ مي شود كه با فشار سنج مخصوص فشار آن مرتبا توسط اپراتور مربوطه كنترل مي گردد. جهت خنك كردن لوله سبز، لوله هاي توليد شده وارد يك محفظه تحت فشار که با اسپری های آب مجهزشــده كه آب اين محفظه ها مرتبا توسط پمپ از مخزن تعويض شده و دماي حاصل از مرحله المنت از اين طريق از لوله ها گرفته مي شود و همزمان در اين مرحله و م مرحله عمل وكيوم كردن( مكش كردن ) انجام میشود و در مرحله بعد وارد وان بعدی برای خنک شدگی نهایی و شکل گیری نهایی می شود و در
مرحله آخر فرآيند توليد  ورود لوله ها به بخش کشنده خط تولید مي باشد كه توسط دو غلتك كه در انتهاي خط توليد قرار دارند انجام مي شود.

پس از مرحله  نهایی لوله ها آماده برش مي نمايند كه اپراتوري كه در انتهاي خط توليد مستقر شده است.

لوله سبز یا پلی پروپیلن را به فاصله 4 متر 4 متر به وسيله قيچي مخصوصي برش و هر 30 متر شاخه لوله را در يك بسته قرار داده و درب آن را پلمپ مي كند.

لازم به ياد آوري است كه طول دستگاه نزديك به 18 متر بوده و تعداد شاخه های خروجی بسته به میزان بار خروجی دستگاه اكسترودر است.
البته بسته به سايز لوله ها، هر چقدر سايز لوله ها بالاتر باشد سرعت توليد پائين تر مي آيد و بالعكس

اساس اکسترودر تک مارپیچ

Posted by roueen in اکسترودر تک مارپیچ on June 18, 2015 with Comments Off on اساس اکسترودر تک مارپیچ

اساس اکسترودر تک مارپیچ

اکسترودر تک ماردون (کنترل پنل)

اکسترودر تک ماردون (کنترل پنل)

اکسترودر تک ماردون (سیستم هوا خنک کن)

اکسترودر تک ماردون (سیستم هوا خنک کن)

اکسترودر تک ماردون (درایو)

اکسترودر تک ماردون (درایو)

اکسترودر تک ماردون

اکسترودر تک ماردون

اکسترودر تک ماردون (کنترل پنل)

اکسترودر تک ماردون (کنترل پنل)

مقدمه :

آگاهی از ویِژگی های پلیمر ها و واکنش های آنها و رفتارشان در مراحل گوناگون فرآیند سبب میشود که به طور مؤثر فرآیند اکستروژن ، تجهیزات و مواد بهینه گردد.

دراین مقاله جهت شناسایی فرایند اکستروژن ، به بخش های مختلف اکسترودر تکمارپیچ پرداخته می شود،چرا که همواره دانستن تجهیزات وچگونگی کار با انهاباعث میشود که به صورت بهینه ازسیستم بهره برداری شود .

محصول استاندارد با کیفیت زمانی تولید می شود که اکسترودر در فرآیند اکستروژناهداف زیر رادنبال کند .

دمای صحیح ذوب پلیمر ·

دمای ذوب ثابت و یکسان ·

فشار مذاب صحیح در دای ·

دستیابی محصول همگن با میکس کامل ·

در این شرایط فرایند اکستروژن بهینه می شود .

دستگاه اکسترودر

اکسترودر پیستونی

ساده ترین اکسترودر اکسترودر پیستونی است که در شکل 1 نشان داده شده است . فشار اکسترودر توسط نیرویی که خارج از دای بهپیستون اعمال می گردد فراهم می شود ، اکسترود می کند . گرما با عث ذوب مواد درون بدنه شده و ویسکوزیته را کاهش می دهد  .

ramextrud

با ترکیب صحیح فشار و دما ، محصول اکسترودربا فشار به شکل مورد نظر و طراحی شده از دای خارج می شود . این نوع اکسترودر ها مشکلاتی نیز دارند . اولا اینکه فرایند به صورت ناپیوسته است ، دوماً به دلیل عایق بودن پلاستیک ،زمان طولانی برای گرم کردن یکنواخت مواداز سطح پوسته تا مرکز لازم است و از طرفی در صورتی که دمای پوسته بیش از حد بالا باشد سبب تخریب رزین در دیواره می گردد. همچنین در ااکسترودر پیستونی ،میزان گرمایش برشی ایجادشده از حرکت اکسترودر حداقل است .

اکسترودر تک مارپیچ

اجزاء کلیدی اکسترودرتک مارپیچه در شکل زیر نشان داده شده است . اکسترودرهای تک مارپیچه 5 قسمت اصلی دارند .

  • سیستم محرک
  • سیستم خوراک
  • مارپیچ،پوسته )سیلندر ( و سیستم های گرم کننده
  • مجموعه دای هد
  • سیستم کنترل

single screw

سیستم محرک شامل موتور ، گیربکس ، بلبیرینگ ها و مجموعه یاتاقان است. سیستم خوراک دهی شامل قیف خوراک ، گلوی خوراک و قسمت خوراک مارپیچ است . پس از آن مارپیچ ، سیلندر وسیستم های گرمایش قرار دارند که در آن بخش رزین جامد منتقل شده ، مذاب و مخلوط می شود و به دای پمپ می گردد. محصول اکسترودر پس از انتقال از مارپیچ در آداپتور و دای شکل می گیرد.

اکسترودر ها با توجه به قطر مارپیچ یا سیلندر و نسبت طول به قطر ) L/D (طبقه بندی و فروخته میشوند .

L/D اکسترودر میزان نسبت طول مارپیچ و سیلندر اکسترودر را توصیف میکند .

تعریف L/D شامل طول محوری L به سازنده تجهیزات بستگی دارد . در برخی کارخانه ها طول بخش تغذیه از طول سیلندر می باشند و بعضی ها شامل نمی شوند . میزان عملکرد، مستقیماً به L/Dاکسترود مربوط می شود . دو اکسترودر با قطر یکسان اما L/D های متفاوت ، عملکردو ظرفیت های متفاوتی دارند . اکسترودر طولانی تر ) L/D بیشتر ( توانایی میکس و ذوب بیشتری دارد .

مزایای اکسترودر های با L/D کوچک :

  • · نیاز به مساحت کمتری برای نصب
  • · سرمایه اولیه کمتر
  • · هزینه جابه جایی کمتر برای مارپیچ ها و سیلندر ها
  • · زمان ماندگاری کمتر در اکسترودرها)بویژه وقتی که مواد حساس به دما ،فرآیند می شوند (
  • · مستلزم گشتاور چرخشی )ترک( کمتر
  • · توان کمتر و در نتیجه نیاز به موتور کوچک تر

اکسترودرها با L/D بلندترنیز این مزایا را به دنبال دارند :

  • · دارای خروجی بیشتر
  • · توانایی اختلاط با ظرفیت بیشتر
  • · می توانند در فشار دای بیشتر پمپ شوند .
  • · گنجایش مذاب بیشتر با گرمای برشی کمتر
  • · افزایش جابه جایی حرارت از سیلندر

L/D بعضی اکسترودرها 18:1 ، 20:1 ، 24:1 ، 30:1 ، 36:1 ، 40:1 می باشند .

تغذیه

شامل دو سیستم تغذیه ،که بصورت ثقلی کار می کنند، دو نوع flood و starve هستند . هردوسیستم تغذیه یک قیف مستقیماً روی گلوی تغذیه اکسترودر دارند. قسمت گلوی تغذیه مستقیما به سیلندر اکسترودر متصل شده ، و از جریان آب برای سرد کردن و گرم کردن ان استفاده می کنند .

جریان آب می تواند با یک مقیاس جریان اندازه گیری شود . دمای گلوی تغذیه باید به گونه ای باشدکه در هنگام لمس ، گرما احساس شود اما داغ نباشد .

هدف ازخنک سازی توسط آب ،جلوگیری مواد تغذیه شده از نرم شدن ،چسبناک شدن و به هم چسبیدن در گلوی تغذیه است که باعث ایجاد مانع و مذاب زود رس در قیف تغذیه میشود . یک مانع عایق بین سیلندر و قسمت تغذیه برای به حداقل رساندن انتقال گرما وصل شده است . شکل هندسی قیف و گلوی تغذیه سبب می شود مواد با کمترین محدودیت درون اکسترودر جریان یابد .

p1

در شکل بالا،بخش A طراحی گلوی تغذیه استاندارد برای دانه یا پودر نشان داده است ،. در حالیکه شکل B برای اکسترودر های با خوراک مذاب مناسب تراست .

گلوهای تغذیه شیاردار درتولید فیلم های دمشی و دیگرکاربرد ها برای افزایش خروجی اکسترودر استفاده میشوند . شکل بعد یک بخش تغذیه شیار دار را نشان می دهد .

توجه داشته باشید که شیار ها در ابتدای بخش خوراک دهی و تغذیه در زیر قیف عمیق بوده و تا قبل از ورودی بخش سیلندر نا پدید میشوند.

کانال های خنک سازی اطراف قسمت تغذیه ،گرمای ناشی از اصطکاک تولید شده به وسیله چرخش مارپیچ و تراکم دانه درون کانال های مارپیچ را خنثی نموده واز مذاب زودرس جلوگیری میکند.

در شکل بالا شیارها در جهت محوری هستند اما می توانند به صورت مارپیچی اطراف قسمت تغذیه باشند . مزیت گلوی تغذیه شیاردار این است که اصطکاک بین دانه ها و دیواره سیلندر را افزایش داده و سبب خروجی بیشتر می شود . اکسترودر های دارای بخش تغذیه شیاردار به سه بحث نیازدارند :

  • · خنک سازی گلوی تغذیه برای خنثی نمودن گرمای اصطکاک تولید شده و افزایش فشار دردسترس  (15000 psi plos)  در قسمت شیاردار تغذیه .
  • · یک مانع عایق خوب بین سیلندرو قسمت تغذیه برای به حداقل رساندن انتقال گرما .
  • · مارپیچ های اکسترودر با نسبت تراکم پایین تر برای افزایش سرعت عملکرد .
  • ·مارپیچ ،سیلندر و هیترها

مارپیچ مواد را به جلو انتقال می دهد ، شرایط گرما دادن و ذوب کردن ، همگن سازی و مخلوط کردن مذاب و رساندن مذاب به دای را فراهم می کند . پلیمر در سیلندر به وسیله هیتر هاوباکنترل دقیق دما در نواحی حرارتی ، گرم ومذاب شده ، ضمن این که از تخریب و گرم شدن بیش از اندازه مواد نیزجلوگیری می شود . مارپیچ و سیلندر مواد را به دای هدایت کرده و فشار را در دای ایجاد می کند .

اجزا سیلندر در شکل بالا نشان داده شده است . در هرناحیه حرارتیدر طول سیلندر ، هیترهایی به همراه ترموکوپل آن ها برای کنترل دمای هیتر و سیلندر قرارگرفته اند . هیترها تا حد امکان سیلندر را می پوشانند. در هر ناحیه حرارتی ممکن است 1،1 ،ویا 3 گرمکن)هیتر( و یک ترموکوپل موجود باشد . فرض شود که نزدیکترین هیتر به ترموکوپل بسوزد دو هیتر دیگر باید انرژی مورد نیاز را تأمین می کنند، در این حالت سطح سیلندر نزدیک دو هیتری که کار می کنند داغ تر است.

اگر دورترین نوار هیتر از ترموکوپل بسوزد ،در این حالت پیش بینی می شودسطح سیلندر زیر هیتر سوخته شده سردتر از مساحت جاییکه هیترها به طور صحیح نزدیک ترموکوپل کنترل عمل می کنند باشد .گرمکن های سوخته شده باید در سریعترین زمان ممکن با گرمکن های جدید با ظرفیت یکسان جایگزین شوند.در هر ناحیه حرارتی برای کنترل دمای سیلندر از اب یا هوای سرد استفاده می شود .

سیلندر ها از فولاد کربن یا مواد دیگر ساخته میشوند . پوسته توسط عملیات نیتراته تا عمق حدود 3mm دارای سطح سفت و سخت می باشد. سیلندر های فولادی ضدزنگ با سطح سخت خود، انتخاب بهتری برای اکسترودرهای کوچک هستند.اگر چه سخت کردن فولاد ضدزنگ سبب کاهش مقاومت خورندگی آن می شود وهمچنین فولاد ضد زنگ یک هادی مناسب برای گرما نیست . راه دوم برای بهبود مقاومت سایشی و خورندگی در سیلندراستفاده از پوشش های bimetal است. این پوشش ازنیتراته کردن ضخیم تر است و سبب افزایش مقاومت سایشی می گردد.

جدول بالا بعضی ازپوشش ها و خواص سایشی آنها را نشان می دهد . راه سوم برای بهبود مقاومت خوردگی و سایش استفاده از یک لایه به صورت آستر در سیلندر می باشد که از جنس الیاژ فولادضدزنگ و نیکل و یا از جنس فولاد سخت شده با کربن می باشد .

برای جلوگیری از سایش سطح سیلندرسطح درونی سیلندر باید سخت تر از مارپیچ باشد . معمولا سطح مارپیچ زودتر از سطح سیلندردچارسایش می شود زیرا مساحت سطحی سیلندر به مارپیچ حدود نسبت 10:1 است واین به آن معنی است که پره هایمارپیچ تنها با 11 % دیواره سیلندر طی هر حرکت انتقالی در تماس هستند .

اگرمسیرحرکت سیلندر ، مکان گلوی تغذیه و یاتاقان درست انتخاب شود ، هنگامیکه اکسترودر سرداست مارپیچ به آسانی به بیرون و داخل می لغزد. اگر برای وارد نمودن مارپیچ به سیلندر ویا چرخاندن آن باید آن را گرم کرد بدین معنی است ، که یک جزء درمسیر درست خود قرار نگرفته است. کار با اکسترودی که در مسیر درست نصب نشده است می تواند آسیب های جدی را بوجود آورد.

فشاربالا در سیلندر اکسترودر می تواند خیلی خطرناک باشد . در نتیجه یک دیسک آزاد ( rupture disk) به هد اکسترودر به منظور ایمنی نصب می شود.ممکن است در هر اتفاقی فشار مذاب در سیلندر افزایش یابد بنابراین ، این دیسک عمل کرده و فشار را شکسته و کاهش میدهد . سیلندر ها به طورمعمول با مقاومت فشاری psi 10000 طراحی می شود .

شکل بالا یک دیسک ازاد fike که درون سیلندر اکسترودر می چرخد را نشان می دهد .

سه نوع هیتر برای گرم کردن سیلندر اکسترودر و آداپتور وجود دارند : cast ,cermic,micaاین هیترها باید ماکزیمم مساحت اطراف سیلندر را بپوشانند تا ازایجاد لکه های داغ جلوگیری شده و گرمای یکسانی را فراهم کنند . اکسترودر های بزرگ عموماً هیتر cast دارند و در اکسترودر های کوچکتر از پیوند هیترها استفاده می شود . هیترهای cermic به نسبت هیترهای mica برای دماهای بالاتر طراحی شده اند . هر دو هیتر در رنج دمایی وسیعی کاربرد دارند . خنک کاری سیلندر با آب یا هوا انجام می شود . خنک سازی بهتربه وسیله آب بهترو با انتقال حرارت بیشتری نسبت به هواانجام شده وهمچنین کنترل دما نیز راحت تر است . مسیرهای آب می توانند کثیف و مسدودشوند . جریان اب باید اندازه گیری شود بنابراین این سیستم باید درست کار کند . سیستم آب گردان به عملکرد آب وابسته است .مزیتی که آب دارد این است که هوای گرم را به داخل واردنمی کند .اگر سیستم خنک کاری آب درست اندازه گیری شود در کاهش گرمای سطح اکسترودر خیلی مؤثر میباشد و میتواند عملکردخوبی داشته باشد.

در شکل بالاسیستم های خنک کاری برای سیستم های گردش آب و هوا نشان داده شده است . فاصله گذارهای شیاردار اطراف سیلندر در سیستم air-cooled )خنک سازی بوسیله هوا(مساحت سطحی اضافی برای بیرون راندن گرما فراهم کرده و بازده خنک سازیرا افزایش می دهد . سیستم های air-cooled یک فن برای جریان هوا دارندو ماکزیمم بازده را برای فرآیندهای مختلف فراهم می کنند.

اکسترودرهای تک مارپیچه سه قسمت متفاوت دارند که در شکل بالا نشان داده شده است.

قسمت های مختلف مارپیچ :

قسمت تغذیه

در این قسمت برای انتقال پودر و دانه از گلوی تغذیه به سمت اکسترودر از پره های عمیق استفادهمیشود .

قسمت انتقال در این قسمت به تدریج ازعمق پره ها کم شده تا دانه های نسبتامذاب راانتقال دهند. رزین ها درقسمت انتقال طی فرآیند مذاب متراکم می شود .

قسمت سنجش

آخرین قسمت مارپیچ است که کم عمق ترین پره ها را دارد .

Recent Comments

    Back to Top

    2025 © همه حقوق این وبسایت برای شرکت آسترونکست محفوظ میباشد